
CHAPTER 11
SORTING, SETS, AND SELECTION

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND

MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO

MERGE SORT
7 2 9 4 2 4 7 9

7 2 2 7 9 4 4 9

7 7 2 2 9 9 4 4

MERGE-SORT

• Merge-sort is based on the divide-and-

conquer paradigm. It consists of three steps:

• Divide: partition input sequence 𝑆 into two

sequences 𝑆1 and 𝑆2 of about
𝑛

2
elements each

• Recur: recursively sort 𝑆1 and 𝑆2

• Conquer: merge 𝑆1 and 𝑆2 into a sorted

sequence

Algorithm mergeSort(𝑆, 𝐶)
Input: Sequence 𝑆 of 𝑛 elements,

Comparator 𝐶
Output: Sequence 𝑆 sorted according to 𝐶
1. if 𝑆. 𝑠𝑖𝑧𝑒 > 1

2. 𝑆1, 𝑆2 ← partition 𝑆,
𝑛

2

3. 𝑆1 ← mergeSort 𝑆1, 𝐶
4. 𝑆2 ← mergeSort 𝑆2, 𝐶
5. 𝑆 ← merge 𝑆1, 𝑆2
6. return 𝑆

DIVIDE AND CONQUER ALGORITHMS
ANALYSIS WITH RECURRENCE EQUATIONS

• Divide-and conquer is a general algorithm

design paradigm:

• Divide: divide the input data 𝑆 into 𝑘 (disjoint)

subsets 𝑆1, 𝑆2, … , 𝑆𝑘

• Recur: solve the subproblems recursively

• Conquer: combine the solutions for 𝑆1, 𝑆2, … , 𝑆𝑘
into a solution for 𝑆

• The base case for the recursion are

subproblems of constant size

• Analysis can be done using recurrence

equations (relations)

DIVIDE AND CONQUER ALGORITHMS
ANALYSIS WITH RECURRENCE EQUATIONS

• When the size of all subproblems is the same

(frequently the case) the recurrence equation

representing the algorithm is:

𝑇 𝑛 = 𝐷 𝑛 + 𝑘𝑇
𝑛

𝑐
+ 𝐶 𝑛

• Where

• 𝐷 𝑛 is the cost of dividing 𝑆 into the 𝑘 subproblems

𝑆1, 𝑆2, … , 𝑆𝑘

• There are 𝑘 subproblems, each of size
𝑛

𝑐
that will be

solved recursively

• 𝐶 𝑛 is the cost of combining the subproblem solutions to

get the solution for 𝑆

EXERCISE
RECURRENCE EQUATION SETUP

• Algorithm – transform multiplication of two 𝑛-bit

integers 𝐼 and 𝐽 into multiplication of
𝑛

2
-bit

integers and some additions/shifts

1. Where does recursion happen in this algorithm?

2. Rewrite the step(s) of the algorithm to show this

clearly.

Algorithm multiply 𝐼, 𝐽
Input: 𝑛-bit integers 𝐼, 𝐽
Output: 𝐼 ∗ 𝐽
1. if 𝑛 > 1
2. Split 𝐼 and 𝐽 into high and low order halves: 𝐼ℎ , 𝐼𝑙 , 𝐽ℎ , 𝐽𝑙
3. 𝑥1 ← 𝐼ℎ ∗ 𝐽ℎ; 𝑥2 ← 𝐼ℎ ∗ 𝐽𝑙; 𝑥3 ← 𝐼𝑙 ∗ 𝐽ℎ; 𝑥4 ← 𝐼𝑙 ∗ 𝐽𝑙

4. 𝑍 ← 𝑥1 ∗ 2
𝑛 + 𝑥2 ∗ 2

𝑛

2 + 𝑥3 ∗ 2
𝑛

2 + 𝑥4
5. else

6. 𝑍 ← 𝐼 ∗ 𝐽
7. return 𝑍

EXERCISE
RECURRENCE EQUATION SETUP

• Algorithm – transform multiplication of two 𝑛-bit

integers 𝐼 and 𝐽 into multiplication of
𝑛

2
-bit

integers and some additions/shifts

3. Assuming that additions and shifts of 𝑛-bit

numbers can be done in 𝑂 𝑛 time, describe a

recurrence equation showing the running time of

this multiplication algorithm

Algorithm multiply 𝐼, 𝐽
Input: 𝑛-bit integers 𝐼, 𝐽
Output: 𝐼 ∗ 𝐽
1. if 𝑛 > 1
2. Split 𝐼 and 𝐽 into high and low order halves: 𝐼ℎ , 𝐼𝑙 , 𝐽ℎ , 𝐽𝑙
3. 𝑥1 ← multiply 𝐼ℎ, 𝐽ℎ ; 𝑥2 ← multiply 𝐼ℎ, 𝐽𝑙 ;

𝑥3 ← multiply 𝐼𝑙 , 𝐽ℎ ; 𝑥4 ← multiply 𝐼𝑙 , 𝐽𝑙

4. 𝑍 ← 𝑥1 ∗ 2
𝑛 + 𝑥2 ∗ 2

𝑛

2 + 𝑥3 ∗ 2
𝑛

2 + 𝑥4
5. else

6. 𝑍 ← 𝐼 ∗ 𝐽
7. return 𝑍

EXERCISE
RECURRENCE EQUATION SETUP

• Algorithm – transform multiplication of two 𝑛-bit

integers 𝐼 and 𝐽 into multiplication of
𝑛

2
-bit

integers and some additions/shifts

• The recurrence equation for this algorithm is:

• 𝑇 𝑛 = 4𝑇
𝑛

2
+ 𝑂 𝑛

• The solution is 𝑂 𝑛2 which is the same as naïve

algorithm

Algorithm multiply 𝐼, 𝐽
Input: 𝑛-bit integers 𝐼, 𝐽
Output: 𝐼 ∗ 𝐽
1. if 𝑛 > 1
2. Split 𝐼 and 𝐽 into high and low order halves: 𝐼ℎ , 𝐼𝑙 , 𝐽ℎ , 𝐽𝑙
3. 𝑥1 ← multiply 𝐼ℎ, 𝐽ℎ ; 𝑥2 ← multiply 𝐼ℎ, 𝐽𝑙 ;

𝑥3 ← multiply 𝐼𝑙 , 𝐽ℎ ; 𝑥4 ← multiply 𝐼𝑙 , 𝐽𝑙

4. 𝑍 ← 𝑥1 ∗ 2
𝑛 + 𝑥2 ∗ 2

𝑛

2 + 𝑥3 ∗ 2
𝑛

2 + 𝑥4
5. else

6. 𝑍 ← 𝐼 ∗ 𝐽
7. return 𝑍

NOW, BACK TO MERGESORT…

• The running time of Merge Sort can be

expressed by the recurrence equation:

𝑇 𝑛 = 2𝑇
𝑛

2
+𝑀 𝑛

• We need to determine 𝑀 𝑛 , the time to

merge two sorted sequences each of size
𝑛

2
.

Algorithm mergeSort(𝑆, 𝐶)
Input: Sequence 𝑆 of 𝑛 elements,

Comparator 𝐶
Output: Sequence 𝑆 sorted according to 𝐶
1. if 𝑆. 𝑠𝑖𝑧𝑒 > 1

2. 𝑆1, 𝑆2 ← partition 𝑆,
𝑛

2

3. 𝑆1 ← mergeSort 𝑆1, 𝐶
4. 𝑆2 ← mergeSort 𝑆2, 𝐶
5. 𝑆 ← merge 𝑆1, 𝑆2
6. return 𝑆

MERGING TWO SORTED SEQUENCES

• The conquer step of merge-sort consists

of merging two sorted sequences 𝐴 and

𝐵 into a sorted sequence 𝑆 containing

the union of the elements of 𝐴 and 𝐵

• Merging two sorted sequences, each

with
𝑛

2
elements and implemented by

means of a doubly linked list, takes

𝑂 𝑛 time

• 𝑀 𝑛 = 𝑂 𝑛

Algorithm 𝑚𝑒𝑟𝑔𝑒(𝐴, 𝐵)

Input: Sequences 𝐴, 𝐵 with
𝑛

2
elements each

Output: Sorted sequence of 𝐴 ∪ 𝐵

1. 𝑆 ← ∅

2. while ¬𝐴. 𝑒𝑚𝑝𝑡𝑦 ∧ ¬𝐵. 𝑒𝑚𝑝𝑡𝑦

3. if 𝐴. 𝑓𝑟𝑜𝑛𝑡 < 𝐵. 𝑓𝑟𝑜𝑛𝑡

4. 𝑆. 𝑖𝑛𝑠𝑒𝑟𝑡𝐵𝑎𝑐𝑘 𝐴. 𝑓𝑟𝑜𝑛𝑡 ; 𝐴. 𝑒𝑟𝑎𝑠𝑒𝐹𝑟𝑜𝑛𝑡

5. else

6. 𝑆. 𝑖𝑛𝑠𝑒𝑟𝑡𝐵𝑎𝑐𝑘 𝐵. 𝑓𝑟𝑜𝑛𝑡 ; 𝐵. 𝑒𝑟𝑎𝑠𝑒𝐹𝑟𝑜𝑛𝑡

7. while ¬𝐴. 𝑒𝑚𝑝𝑡𝑦

8. 𝑆. 𝑖𝑛𝑠𝑒𝑟𝑡𝐵𝑎𝑐𝑘 𝐴. 𝑓𝑟𝑜𝑛𝑡 ; 𝐴. 𝑒𝑟𝑎𝑠𝑒𝐹𝑟𝑜𝑛𝑡

9. while ¬𝐵. 𝑒𝑚𝑝𝑡𝑦

10. 𝑆. 𝑖𝑛𝑠𝑒𝑟𝑡𝐵𝑎𝑐𝑘 𝐵. 𝑓𝑟𝑜𝑛𝑡 ; 𝐵. 𝑒𝑟𝑎𝑠𝑒𝐹𝑟𝑜𝑛𝑡

11. return 𝑆

AND THE COMPLEXITY OF MERGESORT…

• So, the running time of Merge Sort

can be expressed by the recurrence

equation:

𝑇 𝑛 = 2𝑇
𝑛

2
+𝑀 𝑛

= 2𝑇
𝑛

2
+ 𝑂 𝑛

= 𝑂 𝑛 log 𝑛

Algorithm mergeSort(𝑆, 𝐶)
Input: Sequence 𝑆 of 𝑛 elements,

Comparator 𝐶
Output: Sequence 𝑆 sorted according to 𝐶
1. if 𝑆. 𝑠𝑖𝑧𝑒 > 1

2. 𝑆1, 𝑆2 ← partition 𝑆,
𝑛

2

3. 𝑆1 ← mergeSort 𝑆1, 𝐶
4. 𝑆2 ← mergeSort 𝑆2, 𝐶
5. 𝑆 ← merge 𝑆1, 𝑆2
6. return 𝑆

MERGE-SORT EXECUTION TREE (RECURSIVE CALLS)

• An execution of merge-sort is depicted

by a binary tree

• Each node represents a recursive call of

merge-sort and stores

• Unsorted sequence before the execution

and its partition

• Sorted sequence at the end of the

execution

• The root is the initial call

• The leaves are calls on subsequences of

size 0 or 1

7 2 9 4 2 4 7 9

7 2 2 7 9 4 4 9

7 7 2 2 9 9 4 4

EXECUTION EXAMPLE

• Partition

7 2 9 4 2 4 7 9 3 8 6 1 1 3 8 6

7 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

EXECUTION EXAMPLE

• Recursive Call, partition

7 2 | 9 4 2 4 7 9 3 8 6 1 1 3 8 6

7 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

EXECUTION EXAMPLE

• Recursive Call, partition

7 2 | 9 4 2 4 7 9 3 8 6 1 1 3 8 6

7 | 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

EXECUTION EXAMPLE

• Recursive Call, base case

7 2 | 9 4 2 4 7 9 3 8 6 1 1 3 8 6

7 | 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

EXECUTION EXAMPLE

• Recursive Call, base case

7 2 | 9 4 2 4 7 9 3 8 6 1 1 3 8 6

7 | 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

EXECUTION EXAMPLE

• Merge

7 2 | 9 4 2 4 7 9 3 8 6 1 1 3 8 6

7 | 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

EXECUTION EXAMPLE

• Recursive call, …, base case, merge

7 2 | 9 4 2 4 7 9 3 8 6 1 1 3 8 6

7 | 2 2 7 9 | 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

EXECUTION EXAMPLE

• Merge

7 2 | 9 4 2 4 7 9 3 8 6 1 1 3 8 6

7 | 2 2 7 9 | 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

EXECUTION EXAMPLE

• Recursive call, …, merge, merge

7 2 | 9 4 2 4 7 9 3 8 | 6 1 1 3 8 6

7 | 2 2 7 9 | 4 4 9 3 | 8 3 8 6 | 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

EXECUTION EXAMPLE

• Merge

7 2 | 9 4 2 4 7 9 3 8 | 6 1 1 3 8 6

7 | 2 2 7 9 | 4 4 9 3 | 8 3 8 6 | 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

ANOTHER ANALYSIS OF MERGE-SORT

• The height ℎ of the merge-sort tree is

𝑂 log 𝑛

• at each recursive call we divide in half

the sequence,

• The work done at each level is 𝑂 𝑛

• At level 𝑖, we partition and merge 2𝑖

sequences of size
𝑛

2𝑖

• Thus, the total running time of merge-

sort is 𝑂 𝑛 log 𝑛

depth #seqs size Cost for level

0 1 𝑛 𝑛

1 2 n/2 𝑛

… … …

i
2
𝑖

𝑛

2𝑖
𝑛

… … …

log𝑛 2log 𝑛 = 𝑛
𝑛

2log 𝑛
= 1 𝑛

SUMMARY OF SORTING ALGORITHMS (SO FAR)

Algorithm Time Notes

Selection Sort 𝑂 𝑛2 Slow, in-place

For small data sets

Insertion Sort 𝑂 𝑛2 WC, AC

𝑂 𝑛 BC

Slow, in-place

For small data sets

Heap Sort 𝑂 𝑛 log𝑛 Fast, in-place

For large data sets

Merge Sort 𝑂 𝑛 log𝑛 Fast, sequential data access

For huge data sets

QUICK-SORT

7 4 9 6 2 2 4 6 7 9

4 2 2 4 7 9 7 9

2 2 9 9

QUICK-SORT

• Quick-sort is a randomized sorting

algorithm based on the divide-and-

conquer paradigm:

• Divide: pick a random element

𝑥 (called pivot) and partition 𝑆 into

• 𝐿 - elements less than 𝑥

• 𝐸 - elements equal 𝑥

• 𝐺 - elements greater than 𝑥

• Recur: sort 𝐿 and 𝐺

• Conquer: join 𝐿, 𝐸, and 𝐺

x

x

L GE

x

ANALYSIS OF QUICK SORT
USING RECURRENCE RELATIONS

• Assumption: random pivot expected to

give equal sized sublists

• The running time of Quick Sort can be

expressed as:

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑃 𝑛

• 𝑃 𝑛 - time to run partition on

input of size 𝑛

Algorithm quickSort(𝑆, 𝑙, 𝑟)
Input: Sequence 𝑆, indices 𝑙, r
Output: Sequence 𝑆 with the elements

between 𝑙 and 𝑟 sorted

1. if 𝑙 ≥ 𝑟
2. return 𝑆
3. 𝑖 ← rand % 𝑟 − 𝑙 + 𝑙

//random integer between 𝑙 and 𝑟
4. 𝑥 ← 𝑆. at 𝑖
5. ℎ, 𝑘 ← partition 𝑥
6. quickSort 𝑆, 𝑙, ℎ − 1
7. quickSort 𝑆, 𝑘 + 1 , 𝑟
8. return 𝑆

PARTITION

• We partition an input sequence as follows:

• We remove, in turn, each element 𝑦 from 𝑆 and

• We insert 𝑦 into 𝐿, 𝐸, or 𝐺, depending on the result of

the comparison with the pivot 𝑥

• Each insertion and removal is at the beginning or at

the end of a sequence, and hence takes 𝑂 1 time

• Thus, the partition step of quick-sort takes 𝑂 𝑛
time

Algorithm partition 𝑆, 𝑝
Input: Sequence 𝑆, position 𝑝 of the pivot

Output: Subsequences 𝐿, 𝐸, 𝐺 of the elements of 𝑆
less than, equal to, or greater than the pivot,

respectively

1. 𝐿, 𝐸, 𝐺 ← ∅
2. 𝑥 ← 𝑆. erase 𝑝
3. while ¬𝑆. empty
4. 𝑦 ← 𝑆. eraseFront
5. if 𝑦 < 𝑥
6. 𝐿. insertBack 𝑦
7. else if 𝑦 = 𝑥
8. 𝐸. insertBack 𝑦
9. else //𝑦 > 𝑥
10. 𝐺. insertBack 𝑦
11. return 𝐿, 𝐸, 𝐺

SO, THE EXPECTED COMPLEXITY OF QUICK SORT

• Assumption: random pivot expected to

give equal sized sublists

• The running time of Quick Sort can be

expressed as:

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑃 𝑛

= 2𝑇
𝑛

2
+ 𝑂 𝑛

= 𝑂 𝑛 log 𝑛

Algorithm quickSort(𝑆, 𝑙, 𝑟)
Input: Sequence 𝑆, indices 𝑙, r
Output: Sequence 𝑆 with the elements

between 𝑙 and 𝑟 sorted

1. if 𝑙 ≥ 𝑟
2. return 𝑆
3. 𝑖 ← rand % 𝑟 − 𝑙 + 𝑙

//random integer between 𝑙 and 𝑟
4. 𝑥 ← 𝑆. at 𝑖
5. ℎ, 𝑘 ← partition 𝑥
6. quickSort 𝑆, 𝑙, ℎ − 1
7. quickSort 𝑆, 𝑘 + 1 , 𝑟
8. return 𝑆

QUICK-SORT TREE

• An execution of quick-sort is depicted by a

binary tree

• Each node represents a recursive call of quick-

sort and stores

• Unsorted sequence before the execution and

its pivot

• Sorted sequence at the end of the execution

• The root is the initial call

• The leaves are calls on subsequences of size 0

or 1

7 4 9 6 2 2 4 6 7 9

4 2 2 4 7 9 7 9

2 2 9 9

EXECUTION EXAMPLE

• Pivot selection

2 4 3 1 1 2 3 4

1 1

7 2 9 4 3 7 6 1 1 2 3 4 6 7 7 9

7 9 7 7 7 9

9 94 3 3 4

4 4

EXECUTION EXAMPLE

• Partition, recursive call, pivot selection

2 4 3 1 1 2 3 4

1 1

7 2 9 4 3 7 6 1 1 2 3 4 6 7 7 9

7 9 7 7 7 9

9 94 3 3 4

4 4

EXECUTION EXAMPLE

• Partition, recursive call, base case

2 4 3 1 1 2 3 4

1 1

7 2 9 4 3 7 6 1 1 2 3 4 6 7 7 9

7 9 7 7 7 9

9 94 3 3 4

4 4

EXECUTION EXAMPLE

• Recursive call, …, base case, join

2 4 3 1 1 2 3 4

1 1

7 2 9 4 3 7 6 1 1 2 3 4 6 7 7 9

7 9 7 7 7 9

9 94 3 3 4

4 4

EXECUTION EXAMPLE

• Recursive call, pivot selection

2 4 3 1 1 2 3 4

1 1

7 2 9 4 3 7 6 1 1 2 3 4 6 7 7 9

7 9 7 7 7 9

9 94 3 3 4

4 4

EXECUTION EXAMPLE

• Partition, …, recursive call, base case

2 4 3 1 1 2 3 4

1 1

7 2 9 4 3 7 6 1 1 2 3 4 6 7 7 9

7 9 7 7 7 9

9 94 3 3 4

4 4

EXECUTION EXAMPLE

• Join, join

2 4 3 1 1 2 3 4

1 1

7 2 9 4 3 7 6 1 1 2 3 4 6 7 7 9

7 9 7 7 7 9

9 94 3 3 4

4 4

WORST-CASE RUNNING TIME

• The worst case for quick-sort occurs when

the pivot is the unique minimum or maximum

element

• One of 𝐿 and 𝐺 has size 𝑛 − 1 and the other

has size 0

• The running time is proportional to:

𝑛 + 𝑛 − 1 +⋯+ 2 + 1 = 𝑂 𝑛2

• Alternatively, using recurrence equations:

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑂 𝑛 = 𝑂 𝑛2

depth time

0 n

1 n - 1

… …

n - 1 1

EXPECTED RUNNING TIME
REMOVING EQUAL SPLIT ASSUMPTION

• Consider a recursive call of quick-sort on a sequence of size 𝑠

• Good call: the sizes of 𝐿 and 𝐺 are each less than
3𝑠

4

• Bad call: one of 𝐿 and 𝐺 has size greater than
3𝑠

4

• A call is good with probability 1/2

• 1/2 of the possible pivots cause good calls:

7 9 7 6

7 2 9 4 3 7 6 1 9

2 4 3 1 7 2 9 4 3 7 61

7 2 9 4 3 7 6 1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots

EXPECTED RUNNING TIME

• Probabilistic Fact: The expected number of coin tosses required in

order to get 𝑘 heads is 2𝑘 (e.g., it is expected to take 2 tosses to

get heads)

• For a node of depth 𝑖, we expect

•
𝑖

2
ancestors are good calls

• The size of the input sequence for the current call is at most
3

4

𝑖

2
𝑛

• Therefore, we have

• For a node of depth 2 log4
3

𝑛, the expected input size is one

• The expected height of the quick-sort tree is 𝑂 log𝑛

• The amount or work done at the nodes of the same depth is 𝑂 𝑛

• Thus, the expected running time of quick-sort is 𝑂 𝑛 log𝑛

s(r)

s(a) s(b)

s(c) s(d) s(f)s(e)

time per levelexpected height

O(log n)

O(n)

O(n)

O(n)

total expected time: O(n log n)

IN-PLACE QUICK-SORT

• Quick-sort can be implemented to run in-place

• In the partition step, we use replace operations to

rearrange the elements of the input sequence such

that

• the elements less than the pivot have indices less than ℎ

• the elements equal to the pivot have indices between ℎ
and 𝑘

• the elements greater than the pivot have indices greater

than 𝑘

• The recursive calls consider

• elements with indices less than ℎ

• elements with indices greater than 𝑘

Algorithm inPlaceQuickSort(𝑆, 𝑙, 𝑟)
Input: Array 𝑆, indices 𝑙, r
Output: Array 𝑆 with the elements between 𝑙 and 𝑟
sorted

1. if 𝑙 ≥ 𝑟
2. return 𝑆
3. 𝑖 ← rand % 𝑟 − 𝑙 + 𝑙

//random integer between 𝑙 and 𝑟
4. 𝑥 ← 𝑆 𝑖
5. ℎ, 𝑘 ← inPlacePartition 𝑥
6. inPlaceQuickSort(𝑆, 𝑙, ℎ − 1)
7. inPlaceQuickSort 𝑆, 𝑘 + 1, 𝑟
8. return 𝑆

IN-PLACE PARTITIONING

• Perform the partition using two indices to split 𝑆 into 𝐿 and 𝐸 ∪ 𝐺 (a similar method can split

𝐸 ∪ 𝐺 into 𝐸 and 𝐺).

• Repeat until 𝑗 and 𝑘 cross:

• Scan 𝑗 to the right until finding an element ≥ 𝑥.

• Scan 𝑘 to the left until finding an element < 𝑥.

• Swap elements at indices 𝑗 and 𝑘

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9

j k

(pivot = 6)

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9

𝑗 𝑘

SUMMARY OF SORTING ALGORITHMS (SO FAR)

Algorithm Time Notes

Selection Sort 𝑂 𝑛2 Slow, in-place

For small data sets

Insertion Sort 𝑂 𝑛2 WC, AC

𝑂 𝑛 BC

Slow, in-place

For small data sets

Heap Sort 𝑂 𝑛 log𝑛 Fast, in-place

For large data sets

Quick Sort Exp. 𝑂 𝑛 log𝑛 AC, BC

𝑂 𝑛2 WC

Fastest, randomized, in-place

For large data sets

Merge Sort 𝑂 𝑛 log𝑛 Fast, sequential data access

For huge data sets

SORTING LOWER BOUND

COMPARISON-BASED SORTING

• Many sorting algorithms are
comparison based.
• They sort by making comparisons

between pairs of objects

• Examples: bubble-sort, selection-sort,
insertion-sort, heap-sort, merge-sort,
quick-sort, ...

• Let us therefore derive a lower
bound on the running time of any
algorithm that uses comparisons to
sort 𝑛 elements, 𝑥1, 𝑥2, … , 𝑥𝑛.

Is 𝑥𝑖 < 𝑥𝑗?

yes

no

COUNTING COMPARISONS

• Let us just count comparisons then.

• Each possible run of the algorithm corresponds to a root-to-leaf path in a

decision tree x
i
 < x

j
 ?

x
a
 < x

b
 ?

x
m
 < x

o
 ? x

p
 < x

q
 ?x

e
 < x

f
 ? x

k
 < x

l
 ?

x
c
 < x

d
 ?

DECISION TREE HEIGHT

• The height of the decision tree is a lower
bound on the running time

• Every input permutation must lead to a
separate leaf output

• If not, some input …4…5… would have
same output ordering as …5…4…, which
would be wrong

• Since there are 𝑛! = 1 ∗ 2 ∗ ⋯∗ 𝑛 leaves,
the height is at least log 𝑛!

minimum height (time)

log (n!)

x
i
 < x

j
 ?

x
a
 < x

b
 ?

x
m
 < x

o
 ? x

p
 < x

q
 ?x

e
 < x

f
 ? x

k
 < x

l
 ?

x
c
 < x

d
 ?

n!

THE LOWER BOUND

• Any comparison-based sorting algorithm takes at least log 𝑛! time

log(𝑛!) ≥ log
𝑛

2

𝑛
2
=
𝑛

2
log
𝑛

2

• That is, any comparison-based sorting algorithm must run in Ω(𝑛 log 𝑛) time.

BUCKET-SORT AND RADIX-SORT

CAN WE SORT IN LINEAR TIME?

0 1 2 3 4 5 6 7 8 9

B

1, c 7, d 7, g3, b3, a 7, e

BUCKET-SORT

• Let be S be a sequence of 𝑛 (key, element) items with keys

in the range 0,𝑁 − 1

• Bucket-sort uses the keys as indices into an auxiliary array

𝐵 of sequences (buckets)

• Phase 1: Empty sequence 𝑆 by moving each entry into its

bucket 𝐵 𝑘

• Phase 2: for 𝑖 ← 0…𝑁 − 1, move the items of bucket 𝐵 𝑖
to the end of sequence 𝑆

• Analysis:

• Phase 1 takes 𝑂 𝑛 time

• Phase 2 takes 𝑂 𝑛 + 𝑁 time

• Bucket-sort takes 𝑂 𝑛 + 𝑁 time

Algorithm bucketSort(𝑆, 𝑁)
Input: Sequence 𝑆 of entries with integer keys in the range 0, 𝑁 − 1
Output: Sequence 𝑆 sorted in nondecreasing order of the keys

1. 𝐵 ← array of 𝑁 empty sequences

2. for each entry 𝑒 ∈ 𝑆 do

3. 𝑘 ← 𝑒. key
4. remove 𝑒 from 𝑆 and insert it at the end of bucket 𝐵 𝑘
5. for 𝑖 ← 0…𝑁 − 1 do

6. for each entry 𝑒 ∈ 𝐵 𝑖 do

7. remove 𝑒 from bucket 𝐵 𝑖 and insert it at the end of 𝑆

PROPERTIES AND EXTENSIONS

• Properties

• Key-type

• The keys are used as indices into an

array and cannot be arbitrary objects

• No external comparator

• Stable sorting

• The relative order of any two items with

the same key is preserved after the

execution of the algorithm

• Extensions

• Integer keys in the range 𝑎, 𝑏

• Put entry 𝑒 into bucket

𝐵 𝑘 − 𝑎

• String keys from a set 𝐷 of possible

strings, where 𝐷 has constant size (e.g.,

names of the 50 U.S. states)

• Sort 𝐷 and compute the index 𝑖 𝑘 of

each string 𝑘 of 𝐷 in the sorted

sequence

• Put item 𝑒 into bucket 𝐵 𝑖 𝑘

EXAMPLE

• Key range [37, 46] – map to buckets [0,9]

45, d 37, c 40, a 45, g 40, b 46, e

37, c 40, a 40, b 45, d 45, g 46, e

Phase 1

Phase 2

0 1 2 3 4 5 6 7 8 9

B

37, c 45, d 45, g40, b40, a

46, e

LEXICOGRAPHIC ORDER

• Given a list of tuples:

(7,4,6) (5,1,5) (2,4,6) (2,1,4) (5,1,6) (3,2,4)

• After sorting, the list is in lexicographical order:

(2,1,4) (2,4,6) (3,2,4) (5,1,5) (5,1,6) (7,4,6)

LEXICOGRAPHIC ORDER FORMALIZED

• A 𝑑-tuple is a sequence of 𝑑 keys 𝑘1, 𝑘2, … , 𝑘𝑑 , where key 𝑘𝑖 is said to be the 𝑖-th

dimension of the tuple

• Example - the Cartesian coordinates of a point in space is a 3-tuple 𝑥, 𝑦, 𝑧

• The lexicographic order of two 𝑑-tuples is recursively defined as follows

• 𝑥1, 𝑥2, … , 𝑥𝑑 < 𝑦1, 𝑦2, … , 𝑦𝑑

𝑥1 < 𝑦1 ∨ 𝑥1 = 𝑦1 ∧ 𝑥2, … , 𝑥𝑑 < 𝑦2, … , 𝑦𝑑

• i.e., the tuples are compared by the first dimension, then by the second dimension, etc.

EXERCISE
LEXICOGRAPHIC ORDER

• Given a list of 2-tuples, we can order the tuples lexicographically by

applying a stable sorting algorithm two times:

(3,3) (1,5) (2,5) (1,2) (2,3) (1,7) (3,2) (2,2)

• Possible ways of doing it:

• Sort first by 1st element of tuple and then by 2nd element of tuple

• Sort first by 2nd element of tuple and then by 1st element of tuple

• Show the result of sorting the list using both options

EXERCISE
LEXICOGRAPHIC ORDER

• (3,3) (1,5) (2,5) (1,2) (2,3) (1,7) (3,2) (2,2)

• Using a stable sort,

• Sort first by 1st element of tuple and then by 2nd element of tuple

• Sort first by 2nd element of tuple and then by 1st element of tuple

• Option 1:

• 1st sort: (1,5) (1,2) (1,7) (2,5) (2,3) (2,2) (3,3) (3,2)

• 2nd sort: (1,2) (2,2) (3,2) (2,3) (3,3) (1,5) (2,5) (1,7) - WRONG

• Option 2:

• 1st sort: (1,2) (3,2) (2,2) (3,3) (2,3) (1,5) (2,5) (1,7)

• 2nd sort: (1,2) (1,5) (1,7) (2,2) (2,3) (2,5) (3,2) (3,3) - CORRECT

LEXICOGRAPHIC-SORT

• Let 𝐶𝑖 be the comparator that compares two

tuples by their 𝑖-th dimension

• Let stableSort(𝑆, 𝐶) be a stable sorting

algorithm that uses comparator 𝐶

• Lexicographic-sort sorts a sequence of 𝑑-

tuples in lexicographic order by executing 𝑑
times algorithm stableSort, one per dimension

• Lexicographic-sort runs in 𝑂 𝑑𝑇 𝑛 time,

where 𝑇 𝑛 is the running time of stableSort

Algorithm lexicographicSort(𝑆)
Input: Sequence 𝑆 of 𝑑-tuples

Output: Sequence 𝑆 sorted in lexicographic order

1. for 𝑖 ← 𝑑…1 do

2. stableSort 𝑆, 𝐶𝑖

RADIX-SORT

• Radix-sort is a specialization of lexicographic-sort that

uses bucket-sort as the stable sorting algorithm in each

dimension

• Radix-sort is applicable to tuples where the keys in

each dimension 𝑖 are integers in the range 0,𝑁 − 1

• Radix-sort runs in time 𝑂 𝑑 𝑛 + 𝑁

Algorithm radixSort 𝑆, 𝑁
Input: Sequence 𝑆 of 𝑑-tuples such that

0,… , 0 ≤ 𝑥1, … , 𝑥𝑑 and

𝑥1, … , 𝑥𝑑 ≤ 𝑁 − 1,… ,𝑁 − 1
for each tuple 𝑥1, … , 𝑥𝑑 in 𝑆

Output: Sequence 𝑆 sorted in lexicographic order

1. for 𝑖 ← 𝑑…1 do

2. set the key 𝑘 of each entry 𝑘, 𝑥1, … , 𝑥𝑑
of 𝑆 to 𝑖th dimension 𝑥𝑖

3. bucketSort 𝑆, 𝑁

EXAMPLE
RADIX-SORT FOR BINARY NUMBERS

• Sorting a sequence of 4-bit integers

• 𝑑 = 4, 𝑁 = 2 so 𝑂 𝑑 𝑛 + 𝑁 = 𝑂 4 𝑛 + 2 = 𝑂 𝑛

1001

0010

1101

0001

1110

0010

1110

1001

1101

0001

1001

1101

0001

0010

1110

1001

0001

0010

1101

1110

0001

0010

1001

1101

1110

Sort by d=4 Sort by d=3 Sort by d=2 Sort by d=1

SUMMARY OF SORTING ALGORITHMS

Algorithm Time Notes

Selection Sort 𝑂(𝑛2) Slow, in-place

For small data sets

Insertion Sort 𝑂(𝑛2)WC, AC

𝑂(𝑛) BC

Slow, in-place

For small data sets

Heap Sort 𝑂(𝑛 log 𝑛) Fast, in-place

For large data sets

Quick Sort Exp. 𝑂 𝑛 log𝑛 AC, BC

𝑂(𝑛2)WC

Fastest, randomized, in-place

For large data sets

Merge Sort 𝑂(𝑛 log 𝑛) Fast, sequential data access

For huge data sets

Radix Sort 𝑂 𝑑 𝑛 + 𝑁 , 𝑑 #digits,

𝑁 range of digit values

Fastest, stable

only for integers

SETS

SET OPERATIONS

• A set is an ordered data structure similar to an
ordered map, except only elements are stored (and
yes elements must be unique)

• We represent a set by the sorted sequence of its
elements

• By specializing the auxiliary methods the generic
merge algorithm can be used to perform basic set
operations:
• Union - 𝐴 ∪ 𝐵 – Return all elements which appear in
𝐴 or 𝐵 (unique only)

• Intersection - 𝐴 ∩ 𝐵 – Return only elements which
appear in both 𝐴 and 𝐵

• Subtraction - 𝐴 ∖ 𝐵 – Return elements in 𝐴 which are
not in 𝐵

• The running time of an operation on sets 𝐴 and 𝐵
should be at most 𝑂 𝑛𝐴 + 𝑛𝐵

• Set union:
• if 𝑎 < 𝑏

𝑆. insertFront(𝑎)
• if 𝑏 < 𝑎

𝑆. insertFront(𝑏)
• else 𝑎 = 𝑏

𝑆. insertFront(𝑎)

• Set intersection:
• if 𝑎 < 𝑏

{𝑑𝑜 𝑛𝑜𝑡ℎ𝑖𝑛𝑔}
• if 𝑏 < 𝑎

{𝑑𝑜 𝑛𝑜𝑡ℎ𝑖𝑛𝑔}
• else 𝑎 = 𝑏

𝑆. insertBack(𝑎)

GENERIC MERGING

• Generalized merge of two sorted sets 𝐴 and

𝐵

• Auxiliary methods (generic functions)

• aIsLess 𝑎, 𝑆

• bIsLess(𝑏, 𝑆)

• bothAreEqual 𝑎, 𝑏, 𝑆

• Runs in 𝑂 𝑛𝐴 + 𝑛𝐵 time provided the

auxiliary methods run in 𝑂 1 time

Algorithm genericMerge(𝐴, 𝐵)
Input: Sets 𝐴, 𝐵 (implemented as sequences)

Output: Set 𝑆
1. 𝑆 ← ∅
2. while ¬𝐴. empty ∧ ¬𝐵. empty do

3. 𝑎 ← 𝐴. front ; 𝑏 ← 𝐵. front
4. if 𝑎 < 𝑏
5. aIsLess(𝑎, 𝑆) //generic action

6. 𝐴. eraseFront ;
7. else if 𝑏 < 𝑎
8. bIsLess(𝑏, 𝑆) //generic action

9. 𝐵. eraseFront
10. else //𝑎 = 𝑏
11. bothAreEqual(𝑎, 𝑏, 𝑆) //generic action

12. 𝐴. eraseFront ; 𝐵. eraseFront
13. while ¬𝐴. empty() do

14. aIsLess(𝐴. front , 𝑆); 𝐴. eraseFront
15. while ¬𝐵. empty() do

16. bIsLess(𝐵. front , 𝑆); 𝐵. eraseFront
17. return 𝑆

USING GENERIC MERGE FOR SET OPERATIONS

• Any of the set operations can be implemented using a generic merge

• For example:

• For intersection: only copy elements that are duplicated in both list

• For union: copy every element from both lists except for the duplicates

• All methods run in linear time

BETTER/TYPICAL SET IMPLEMENTATION

• Can use search trees such that the key is equivalent to the element to

implement a set, allows fast ordering of data

6

92

41 8

<

>

=

SELECTION

THE SELECTION PROBLEM

• Given an integer 𝑘 and 𝑛 elements 𝑥1, 𝑥2, … , 𝑥𝑛 , taken from a total

order, find the 𝑘-th smallest element in this set.

• Also called order statistics, the 𝑖th order statistic is the 𝑖th smallest element

• Minimum - 𝑘 = 1 - 1st order statistic

• Maximum - 𝑘 = 𝑛 - 𝑛th order statistic

• Median - 𝑘 =
𝑛

2

• etc

THE SELECTION PROBLEM

• Naïve solution - SORT!

•We can sort the set in 𝑂 𝑛 log 𝑛 time and then index the 𝑘-th

element.

• Can we solve the selection problem faster?

7 4 9 6 2 2 4 6 7 9 k=3

THE MINIMUM (OR MAXIMUM)

Algorithm minimum(𝐴)
Input: Array 𝐴
Output: minimum element in 𝐴
1. 𝑚 ← 𝐴 1
2. for 𝑖 ← 2…𝑛 do

3. 𝑚 ← min 𝑚, 𝐴 𝑖
4. return 𝑚

• Running Time

• 𝑂(𝑛)

• Is this the best possible?

QUICK-SELECT

• Quick-select is a randomized selection

algorithm based on the prune-and-search

paradigm:

• Prune: pick a random element 𝑥 (called pivot)

and partition 𝑆 into

• 𝐿 elements < 𝑥

• 𝐸 elements = 𝑥

• 𝐺 elements > 𝑥

• Search: depending on 𝑘, either answer is in 𝐸,

or we need to recur on either 𝐿 or 𝐺

• Note: Partition same as Quicksort

x

x

L GE

𝑘 ≤ |𝐿|

𝐿 < 𝑘 ≤ 𝐿 + 𝐸
(𝑑𝑜𝑛𝑒)

𝑘 > 𝐿 + 𝐸
𝑘’ = 𝑘 − 𝐿 − 𝐸

QUICK-SELECT VISUALIZATION

• An execution of quick-select can be visualized by a recursion path

• Each node represents a recursive call of quick-select, and stores 𝑘 and the remaining

sequence
𝑘 = 5, 𝑆 = (7, 4,9, 3, 2, 6, 5, 1, 8)

5

𝑘 = 2, 𝑆 = (7, 4, 9, 6, 5, 8)

𝑘 = 2, 𝑆 = (7, 4, 6, 5)

𝑘 = 1, 𝑆 = (7, 6, 5)

EXERCISE

• Best Case - even splits (n/2 and n/2)

• Worst Case - bad splits (1 and n-1)

• Derive and solve the recurrence relation corresponding to the best case performance of randomized quick-select.

• Derive and solve the recurrence relation corresponding to the worst case performance of randomized quick-select.

7 2 9 4 3 7 6 1 9

2 4 3 1 7 2 9 4 3 7 6

7 2 9 4 3 7 6 1

Good call Bad call

EXPECTED RUNNING TIME

• Consider a recursive call of quick-select on a sequence of size 𝑠

• Good call: the size of 𝐿 and 𝐺 is at most
3𝑠

4

• Bad call: the size of 𝐿 and 𝐺 is greater than
3𝑠

4

• A call is good with probability 1/2

• 1/2 of the possible pivots cause good calls:

7 9 7 1 1

7 2 9 4 3 7 6 1 9

2 4 3 1 7 2 9 4 3 7 61

7 2 9 4 3 7 6 1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots

EXPECTED RUNNING TIME

• Probabilistic Fact #1: The expected number of coin tosses required in order to get one head is two

• Probabilistic Fact #2: Expectation is a linear function:

• 𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸(𝑌)

• 𝐸 𝑐𝑋 = 𝑐𝐸(𝑋)

• Let 𝑇 𝑛 denote the expected running time of quick-select.

• By Fact #2, 𝑇 𝑛 < 𝑇
3𝑛

4
+ 𝑏𝑛 ∗ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 # 𝑜𝑓 𝑐𝑎𝑙𝑙𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑎 𝑔𝑜𝑜𝑑 𝑐𝑎𝑙𝑙

• By Fact #1, 𝑇 𝑛 < 𝑇
3𝑛

4
+ 2𝑏𝑛

• That is, 𝑇 𝑛 is a geometric series: 𝑇 𝑛 < 2𝑏𝑛 + 2𝑏
3

4
𝑛 + 2𝑏

3

4

2
𝑛 + 2𝑏

3

4

3
𝑛 +⋯

• So 𝑇 𝑛 is 𝑂 𝑛 .

• We can solve the selection problem in 𝑂 𝑛 expected time.

DETERMINISTIC SELECTION

• We can do selection in 𝑂 𝑛 worst-case time.

• Main idea: recursively use the selection algorithm itself to find a good pivot for quick-select:

• Divide 𝑆 into
𝑛

5
sets of 5 each

• Find a median in each set

• Recursively find the median of the “baby” medians.

• See Exercise C-11.22 for details of analysis.

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Min size

for 𝐿

Min size

for 𝐺

INTERVIEW QUESTION 1

• You are given two sorted arrays, 𝐴 and 𝐵, where 𝐴 has a large enough

buffer at the end to hold 𝐵. Write a method to merge 𝐵 into 𝐴 in sorted

order.

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND

SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

INTERVIEW QUESTION 2

• Write a method to sort an array of strings so that all the anagrams are next

to each other.

• Two words are anagrams if they use the exact same letters, i.e., race and care are

anagrams

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND

SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

INTERVIEW QUESTION 3

• Imagine you have a 2 TB file with one string per line. Explain how you would

sort the file.

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND

SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

