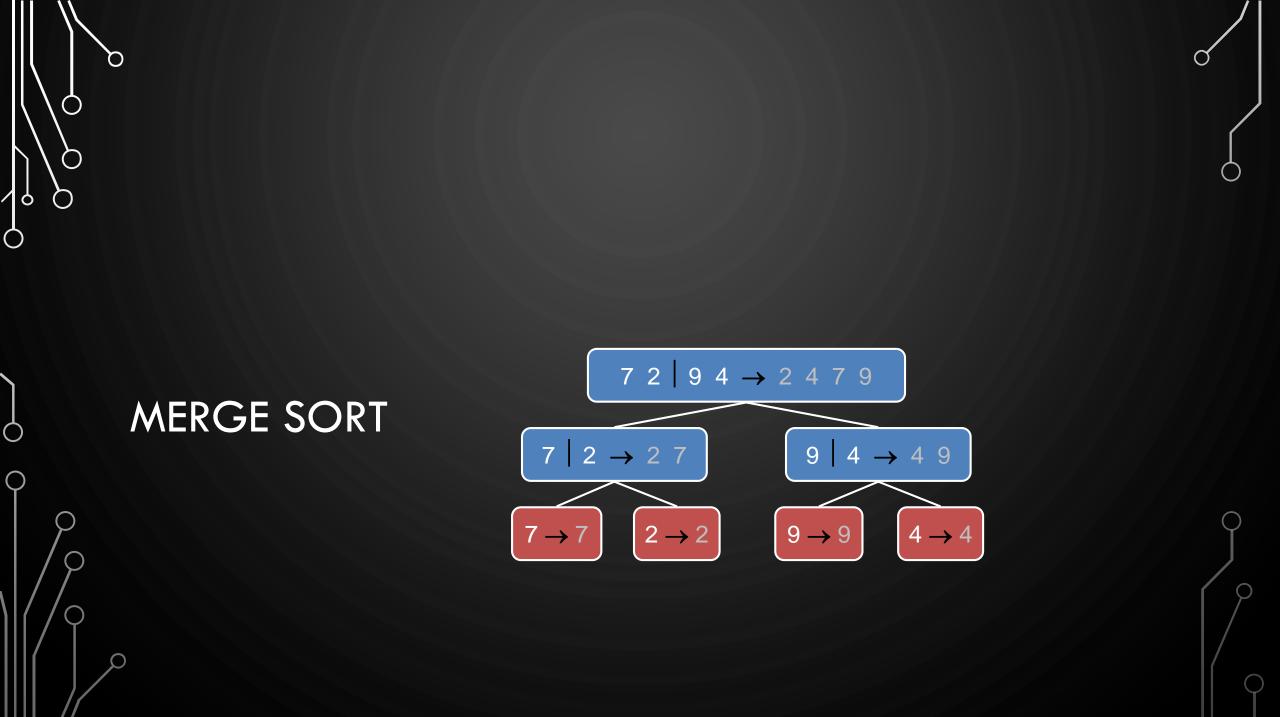
CHAPTER 11 SORTING, SETS, AND SELECTION

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA AND MOUNT (WILEY 2004) AND SLIDES FROM NANCY M. AMATO



MERGE-SORT

- Merge-sort is based on the divide-andconquer paradigm. It consists of three steps:
 - Divide: partition input sequence S into two sequences S_1 and S_2 of about $\frac{n}{2}$ elements each
 - Recur: recursively sort S_1 and S_2
 - Conquer: merge S₁ and S₂ into a sorted sequence

Algorithm mergeSort(S, C)Input: Sequence S of n elements,
Comparator COutput: Sequence S sorted according to C1. if S.size() > 12. $(S_1, S_2) \leftarrow \text{partition} \left(S, \frac{n}{2}\right)$ 3. $S_1 \leftarrow \text{mergeSort}(S_1, C)$ 4. $S_2 \leftarrow \text{mergeSort}(S_2, C)$ 5. $S \leftarrow \text{merge}(S_1, S_2)$

6. return S

Q

DIVIDE AND CONQUER ALGORITHMS ANALYSIS WITH RECURRENCE EQUATIONS

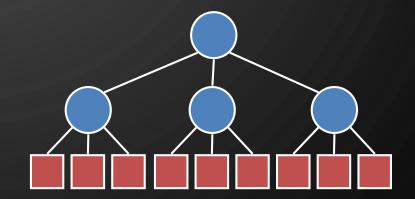
 Divide-and conquer is a general algorithm design paradigm:

O

 \bigcirc

 \bigcirc

- Divide: divide the input data S into k (disjoint) subsets S_1, S_2, \ldots, S_k
- Recur: solve the subproblems recursively
- Conquer: combine the solutions for S_1, S_2, \dots, S_k into a solution for S
- The base case for the recursion are subproblems of constant size
- Analysis can be done using recurrence equations (relations)



DIVIDE AND CONQUER ALGORITHMS ANALYSIS WITH RECURRENCE EQUATIONS

• When the size of all subproblems is the same (frequently the case) the recurrence equation representing the algorithm is:

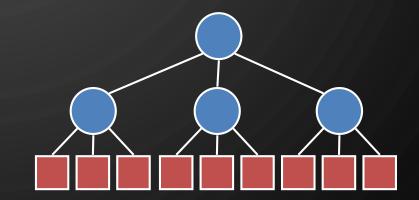
$$T(n) = D(n) + kT\left(\frac{n}{c}\right) + C(n)$$

Where

D

 \bigcirc

- D(n) is the cost of dividing S into the k subproblems S_1, S_2, \dots, S_k
- There are k subproblems, each of size $\frac{n}{c}$ that will be solved recursively
- C(n) is the cost of combining the subproblem solutions to get the solution for S



Z

Q

EXERCISE RECURRENCE EQUATION SETUP

- Algorithm transform multiplication of two *n*-bit integers *I* and *J* into multiplication of $\left(\frac{n}{2}\right)$ -bit integers and some additions/shifts
- 1. Where does recursion happen in this algorithm?
- 2. Rewrite the step(s) of the algorithm to show this clearly.

Algorithm multiply(*I*, *I*) Input: n-bit integers I, J Output: *I* * *J* if n > 12. Split I and J into high and low order halves: I_h , I_l , J_h , J_l 3. $x_1 \leftarrow I_h * J_h; x_2 \leftarrow I_h * J_l; x_3 \leftarrow I_l * J_h; x_4 \leftarrow I_l * J_l$ $Z \leftarrow x_1 * 2^n + x_2 * 2^{\frac{n}{2}} + x_3 * 2^{\frac{n}{2}} + x_4$ 4. 5. else 6. $Z \leftarrow I * J$ 7. return Z

$\left<\right>$

Ó

EXERCISE RECURRENCE EQUATION SETUP

- Algorithm transform multiplication of two *n*-bit integers *I* and *J* into multiplication of $\left(\frac{n}{2}\right)$ -bit integers and some additions/shifts
- 3. Assuming that additions and shifts of n-bit numbers can be done in O(n) time, describe a recurrence equation showing the running time of this multiplication algorithm

Algorithm multiply(I, J)Input: n-bit integers I, JOutput: I * J1. if n > 12. Split I and J into high and low order halves: I_h, I_l, J_h, J_l 3. $x_1 \leftarrow multiply(I_h, J_h); x_2 \leftarrow multiply(I_h, J_l);$
 $x_3 \leftarrow multiply(I_l, J_h); x_4 \leftarrow multiply(I_l, J_l)$ 4. $Z \leftarrow x_1 * 2^n + x_2 * 2^{\frac{n}{2}} + x_3 * 2^{\frac{n}{2}} + x_4$ 5. else6. $Z \leftarrow I * J$ 7. return Z

Q

EXERCISE RECURRENCE EQUATION SETUP

- Algorithm transform multiplication of two *n*-bit integers *I* and *J* into multiplication of $\left(\frac{n}{2}\right)$ -bit integers and some additions/shifts
- The recurrence equation for this algorithm is:
 - $T(n) = 4T\left(\frac{n}{2}\right) + O(n)$
 - The solution is $\mathcal{O}(n^2)$ which is the same as naïve algorithm

Algorithm multiply(*I*, *J*) Input: *n*-bit integers *I*, *J* Output: I * J1. if n > 12. Split *I* and *J* into high and low order halves: I_h, I_l, J_h, J_l 3. $x_1 \leftarrow \text{multiply}(I_h, J_h); x_2 \leftarrow \text{multiply}(I_h, J_l);$ $x_3 \leftarrow \text{multiply}(I_l, J_h); x_4 \leftarrow \text{multiply}(I_l, J_l)$ 4. $Z \leftarrow x_1 * 2^n + x_2 * 2^{\frac{n}{2}} + x_3 * 2^{\frac{n}{2}} + x_4$ 5. else 6. $Z \leftarrow I * J$ 7. return *Z*

NOW, BACK TO MERGESORT...

- The running time of Merge Sort can be expressed by the recurrence equation: $T(n) = 2T\left(\frac{n}{2}\right) + M(n)$
- We need to determine M(n), the time to merge two sorted sequences each of size $\frac{n}{2}$.

Algorithm mergeSort(S, C)Input: Sequence S of n elements,
Comparator COutput: Sequence S sorted according to C1. if S.size() > 12. $(S_1, S_2) \leftarrow \text{partition} \left(S, \frac{n}{2}\right)$ 3. $S_1 \leftarrow \text{mergeSort}(S_1, C)$ 4. $S_2 \leftarrow \text{mergeSort}(S_2, C)$ 5. $S \leftarrow \text{merge}(S_1, S_2)$ 6. return S

MERGING TWO SORTED SEQUENCES

- The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B
- Merging two sorted sequences, each with $\frac{n}{2}$ elements and implemented by means of a doubly linked list, takes O(n) time
 - M(n) = O(n)

Q

Algorithm merge(A, B)

Input: Sequences A, B with $\frac{n}{2}$ elements each **Output:** Sorted sequence of $A \cup B$ 1. $S \leftarrow \emptyset$ while $\neg A.empty() \land \neg B.empty()$ 2. 3. if A.front() < B.front()4. S.insertBack(A.front()); A.eraseFront()5. else S.insertBack(B.front()); B.eraseFront()6. while $\neg A.empty()$ 7. S.insertBack(A.front()); A.eraseFront()8. while $\neg B.empty()$ 9. S.insertBack(B.front()); B.eraseFront()10. **11.** return S

AND THE COMPLEXITY OF MERGESORT...

 So, the running time of Merge Sort can be expressed by the recurrence equation:

Q

 $T(n) = 2T\left(\frac{n}{2}\right) + M(n)$ $= 2T\left(\frac{n}{2}\right) + O(n)$ $= O(n\log n)$

Algorithm mergeSort(S, C)Input: Sequence S of n elements,
Comparator COutput: Sequence S sorted according to C1. if S.size() > 12. $(S_1, S_2) \leftarrow \text{partition} \left(S, \frac{n}{2}\right)$ 3. $S_1 \leftarrow \text{mergeSort}(S_1, C)$ 4. $S_2 \leftarrow \text{mergeSort}(S_2, C)$ 5. $S \leftarrow \text{merge}(S_1, S_2)$

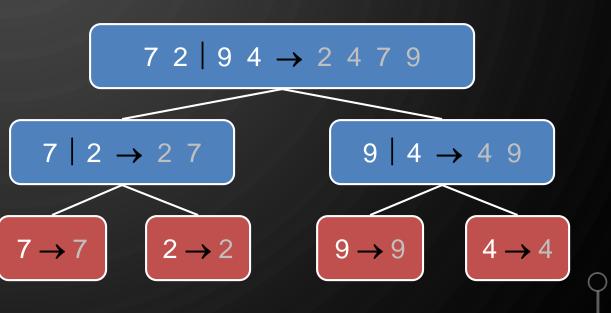
6. return \overline{S}

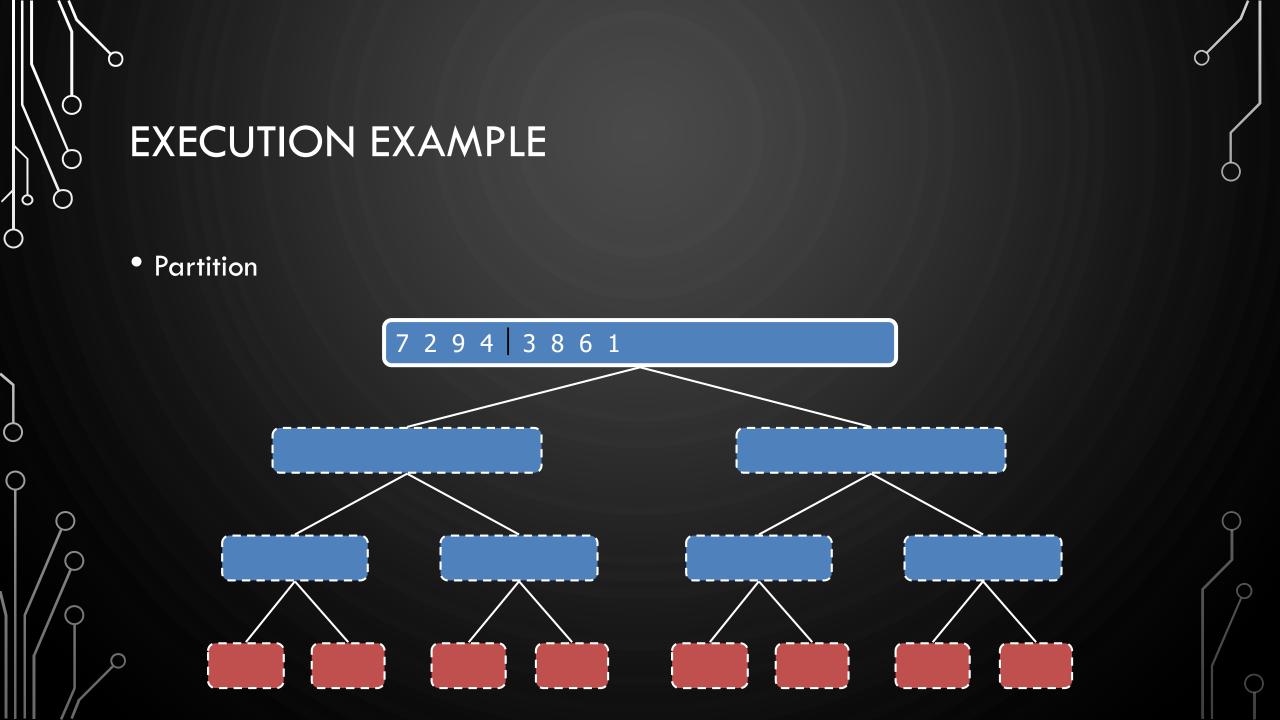
MERGE-SORT EXECUTION TREE (RECURSIVE CALLS)

- An execution of merge-sort is depicted by a binary tree
 - Each node represents a recursive call of merge-sort and stores
 - Unsorted sequence before the execution and its partition
 - Sorted sequence at the end of the execution
 - The root is the initial call

Q

 The leaves are calls on subsequences of size 0 or 1





EXECUTION EXAMPLE

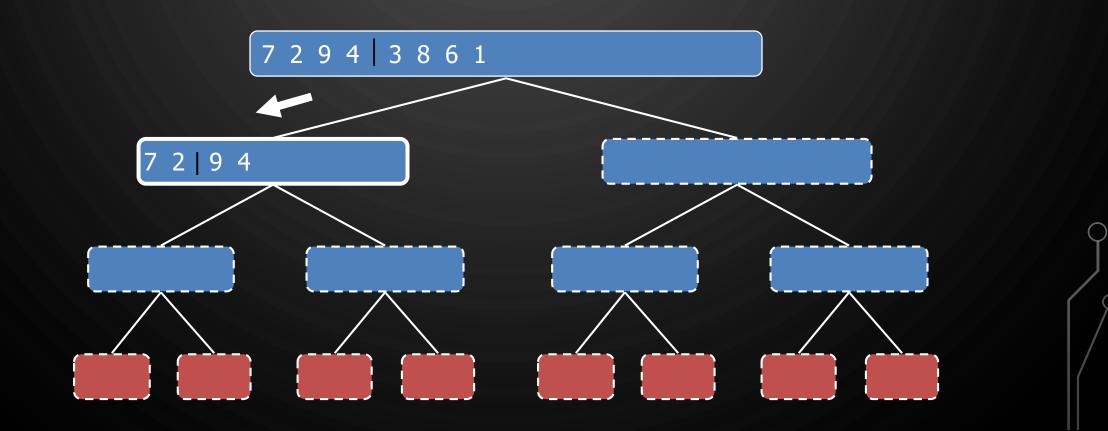
• Recursive Call, partition

Q

 \bigcirc

O

 \mathcal{O}



EXECUTION EXAMPLE

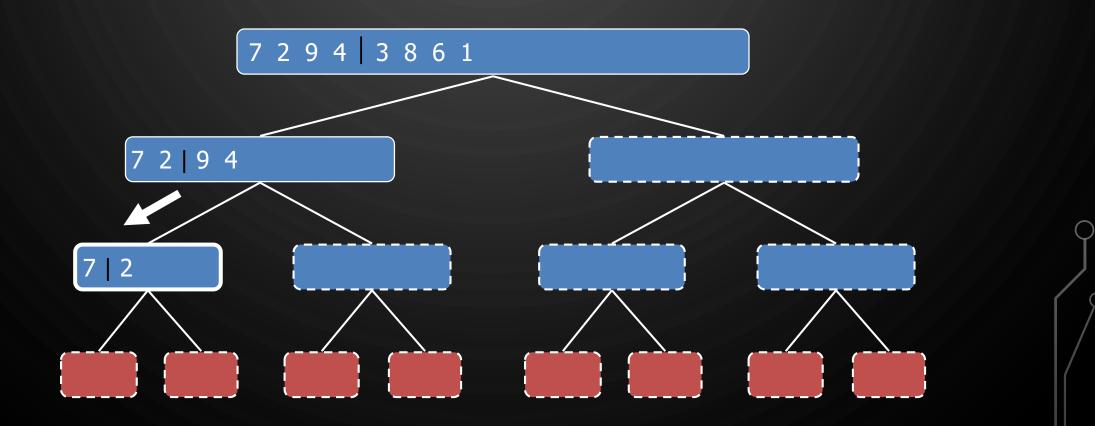
• Recursive Call, partition

Q

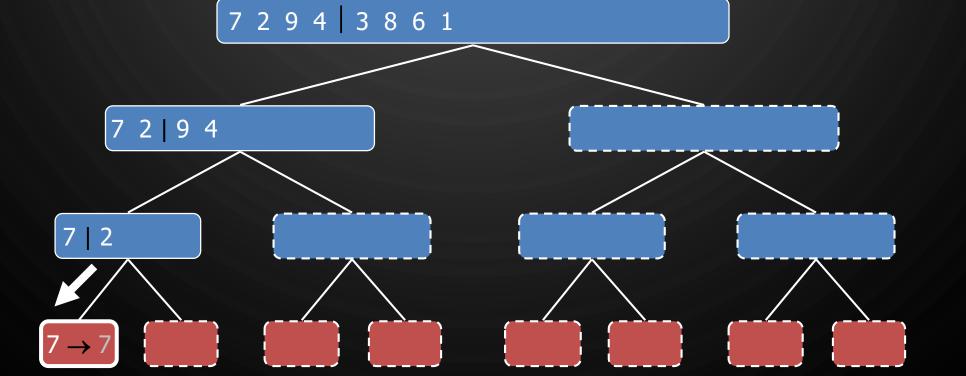
 \bigcirc

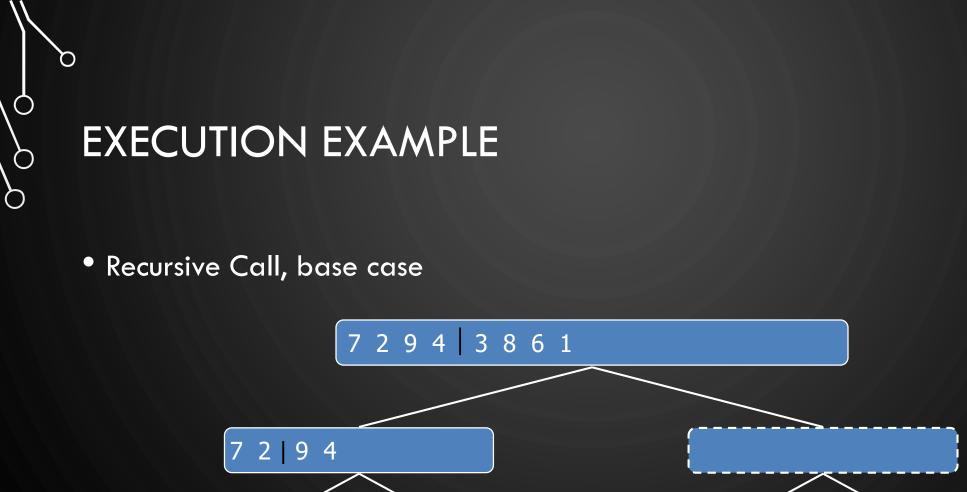
O

 \mathcal{O}



• Recursive Call, base case





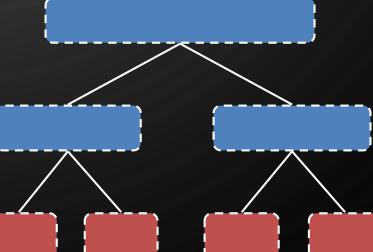
6

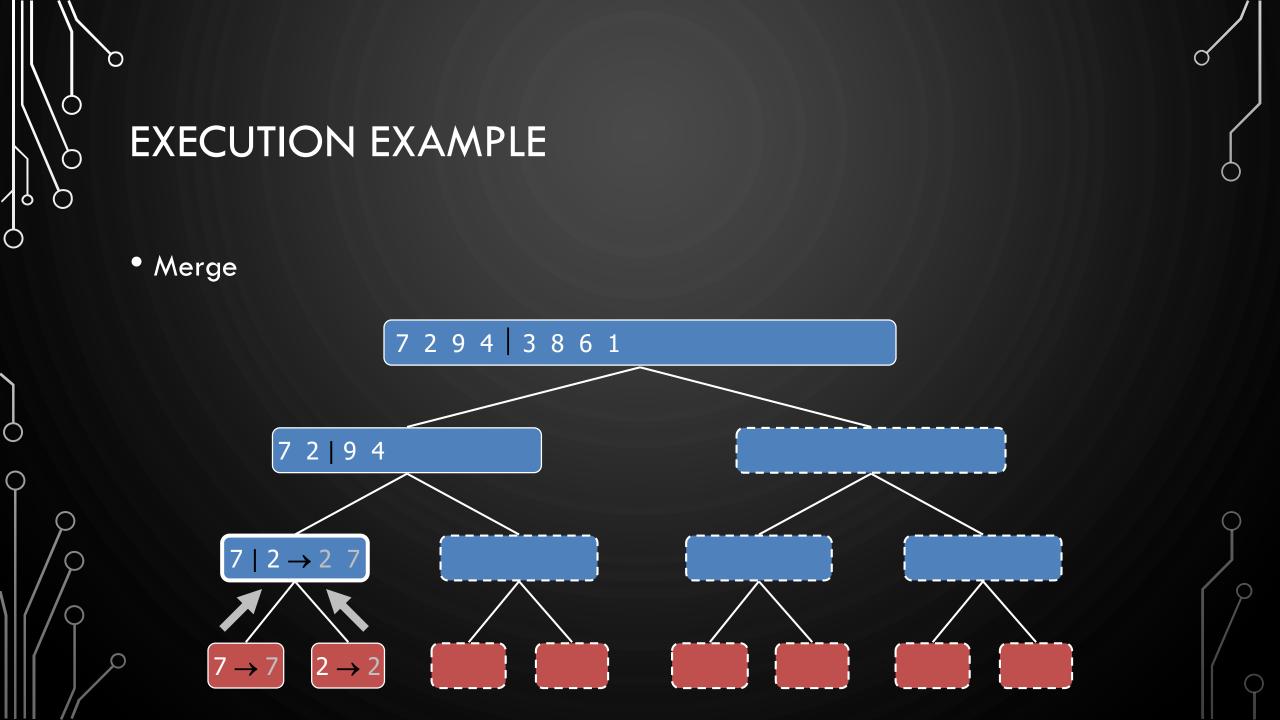
7 | 2

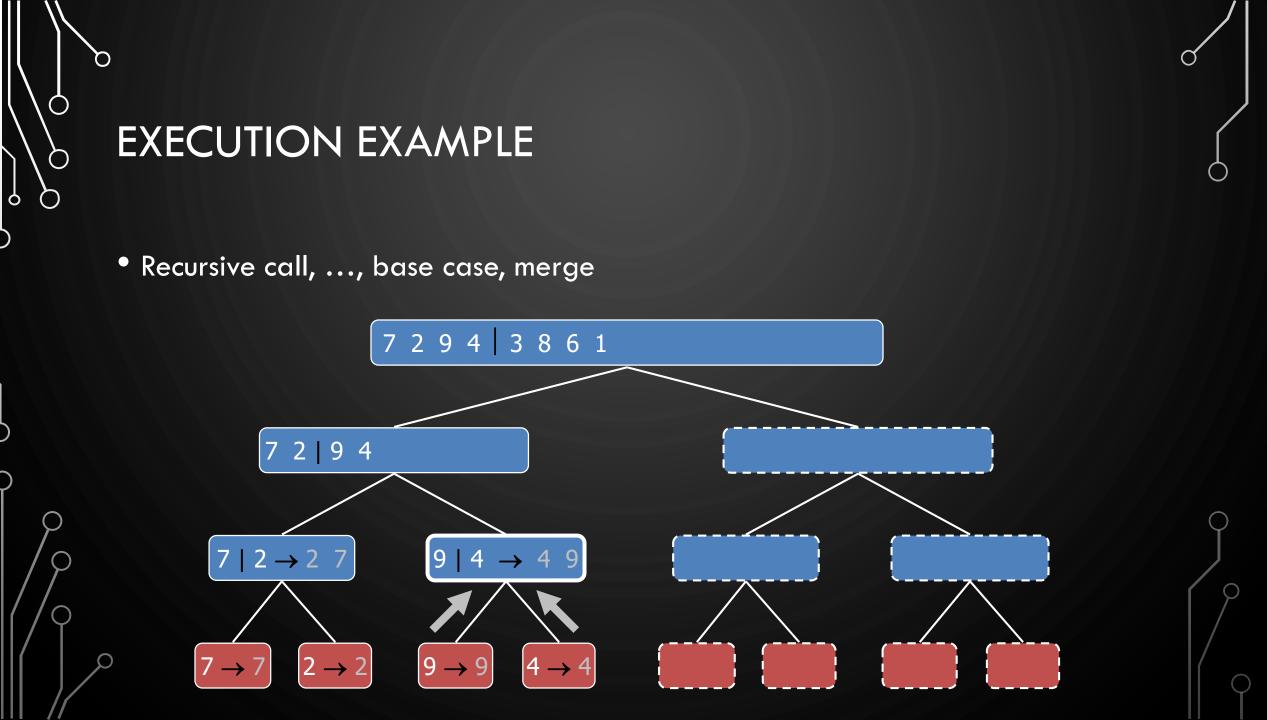
 $7 \rightarrow 7$

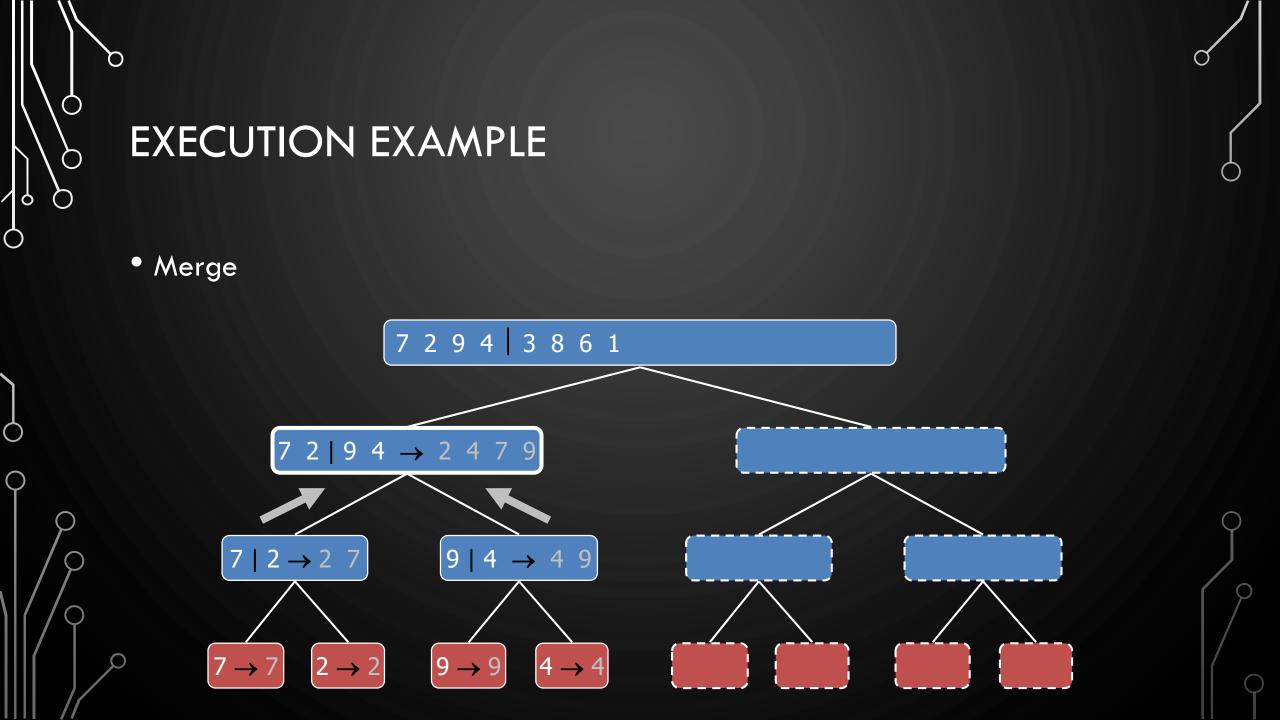
2 _

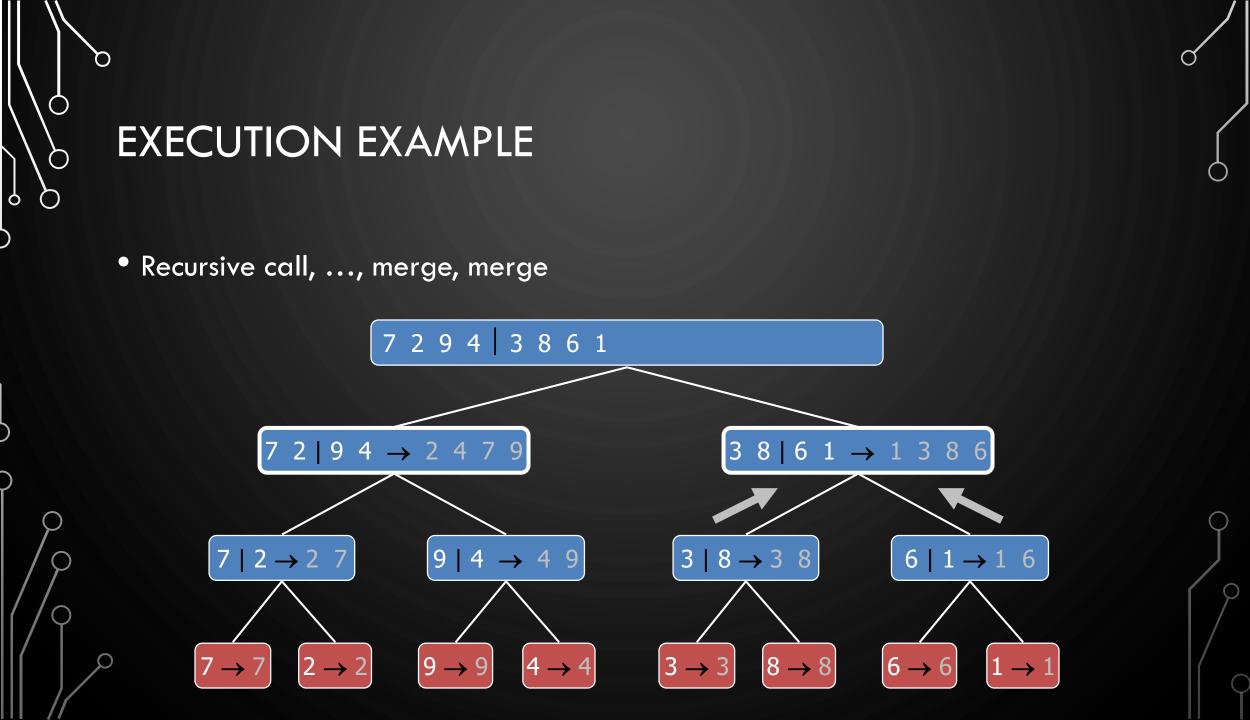
 \bigcirc



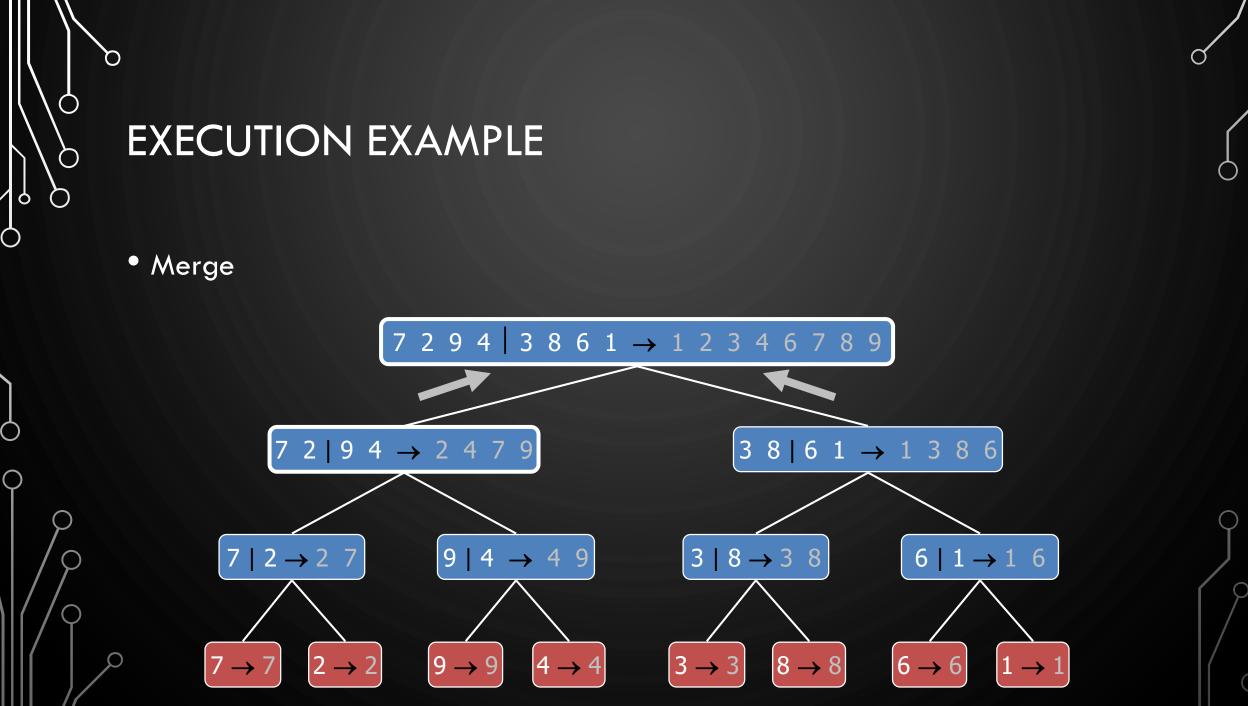








 \bigcirc



ANOTHER ANALYSIS OF MERGE-SORT

• The height h of the merge-sort tree is $O(\log n)$

- at each recursive call we divide in half the sequence,
- The work done at each level is O(n)
 - At level *i*, we partition and merge 2^i sequences of size $\frac{n}{2^i}$
- Thus, the total running time of mergesort is $O(n \log n)$

depth	#seqs	size	Cost for level	
0	1	n	n	
1	2	n/2	n	
		 n		
i	2^{i}	$\overline{2^i}$	n	
logn 2	$2^{\log n} = n \frac{1}{2}$	$\frac{n}{2^{\log n}} = 1$	n n	

SUMMARY OF SORTING ALGORITHMS (SO FAR)

Algorithm	Time	Notes
Selection Sort	0(n ²)	Slow, in-place For small data sets
Insertion Sort	$O(n^2)$ WC, AC O(n) BC	Slow, in-place For small data sets
Heap Sort	$O(n \log n)$	Fast, in-place For large data sets
Merge Sort	$O(n \log n)$	Fast, sequential data access For huge data sets

Q

Q

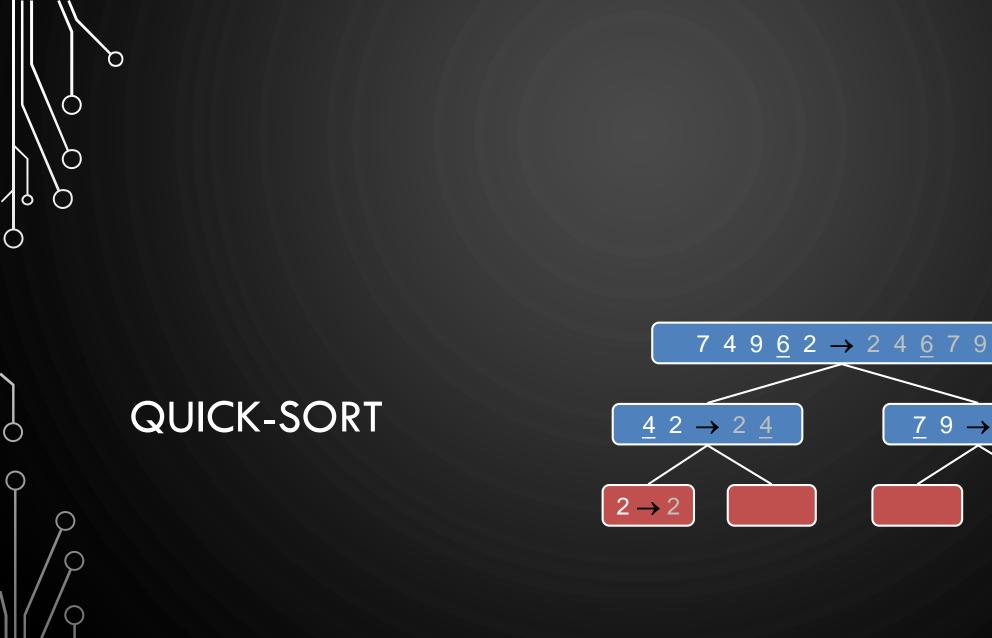
 \bigcirc

O

 \mathcal{O}

6

 \bigcirc



 \circ

 $\underline{7} 9 \rightarrow \underline{7} 9$

 $9 \rightarrow 9$

QUICK-SORT

6

 Quick-sort is a randomized sorting algorithm based on the divide-andconquer paradigm: \boldsymbol{x}

E

- **Divide:** pick a random element x (called pivot) and partition S into
 - L elements less than x
 - E elements equal x
 - G elements greater than x
- Recur: sort L and G
- Conquer: join L, E, and G

ANALYSIS OF QUICK SORT USING RECURRENCE RELATIONS

- Assumption: random pivot expected to give equal sized sublists
- The running time of Quick Sort can be expressed as:

 $T(n) = 2T\left(\frac{n}{2}\right) + P(n)$

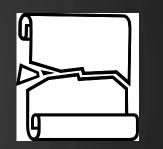
• P(n) - time to run partition() on input of size n

Algorithm quickSort(S, l, r) **Input:** Sequence S, indices l, r **Output:** Sequence S with the elements between l and r sorted 1. if $l \ge r$ 2. return S 3. $i \leftarrow rand() \% (r-l) + l$ //random integer between l and r4. $x \leftarrow S$. at(i) 5. $(h, k) \leftarrow \text{partition}(x)$ 6. quickSort(S, l, h - 1) 7. quickSort(S, k + 1, r) 8. return S

PARTITION

Q

- We partition an input sequence as follows:
 - We remove, in turn, each element y from S and
 - We insert y into L, E, or G, depending on the result of the comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes O(1) time
- Thus, the partition step of quick-sort takes O(n) time



Algorithm partition(S, p) Input: Sequence S, position p of the pivot Output: Subsequences L, E, G of the elements of S less than, equal to, or greater than the pivot, respectively 1. L, E, G $\leftarrow \emptyset$ 2. $x \leftarrow S$. erase(p)

3. while
$$\neg S$$
. empty()

$$4. \qquad y \leftarrow S. \text{ eraseFront}()$$

5. if y < x
6. *L*. insertBack(y)

$$. \qquad \text{else if } y = x$$

8. E. insertBack(y)

- 9. else //y > x
- 10. G. insertBack(y)
- **11.** return $L, \overline{E}, \overline{G}$

SO, THE EXPECTED COMPLEXITY OF QUICK SORT

- Assumption: random pivot expected to give equal sized sublists
- The running time of Quick Sort can be expressed as:

 $T(n) = 2T\left(\frac{n}{2}\right) + P(n)$ $= 2T\left(\frac{n}{2}\right) + O(n)$ $= O(n\log n)$

Q

Algorithm quickSort(S, l, r) **Input:** Sequence S, indices l, r **Output:** Sequence S with the elements between l and r sorted 1. if $l \ge r$ 2. return S 3. $i \leftarrow rand() \% (r-l) + l$ //random integer between l and r4. $x \leftarrow S.at(i)$ 5. $(h, k) \leftarrow \text{partition}(x)$ 6. quickSort(S, l, h - 1) 7. quickSort(S, k + 1, r) 8. return S

QUICK-SORT TREE

 \mathbb{O}

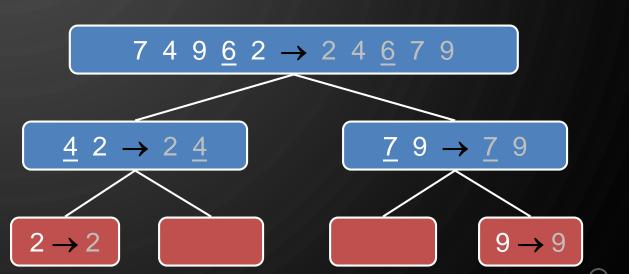
 \bigcirc

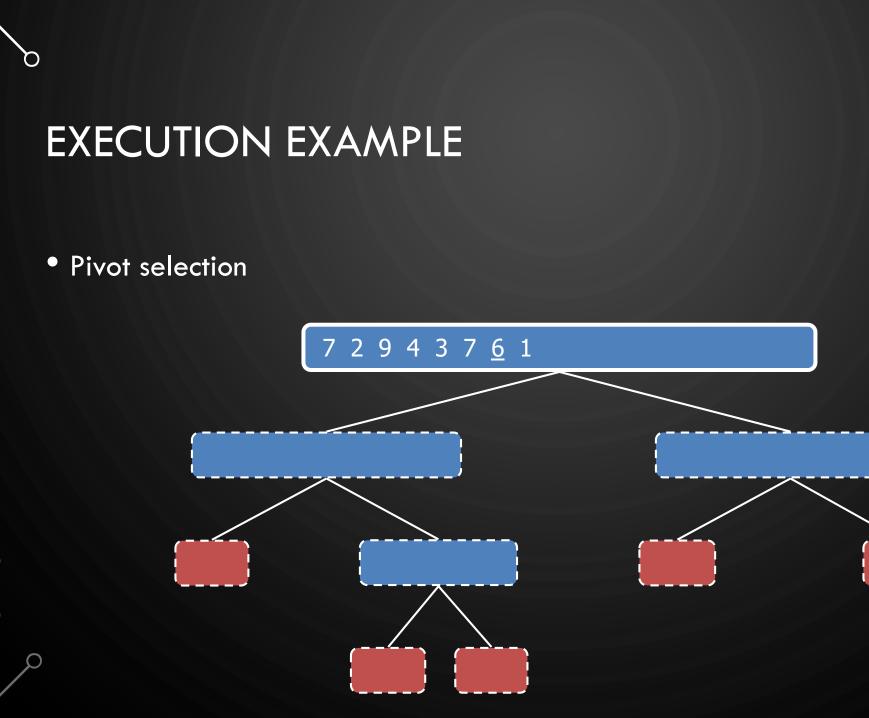
O

6

 \bigcirc

- An execution of quick-sort is depicted by a binary tree
 - Each node represents a recursive call of quicksort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
 - The root is the initial call
 - The leaves are calls on subsequences of size 0 or 1





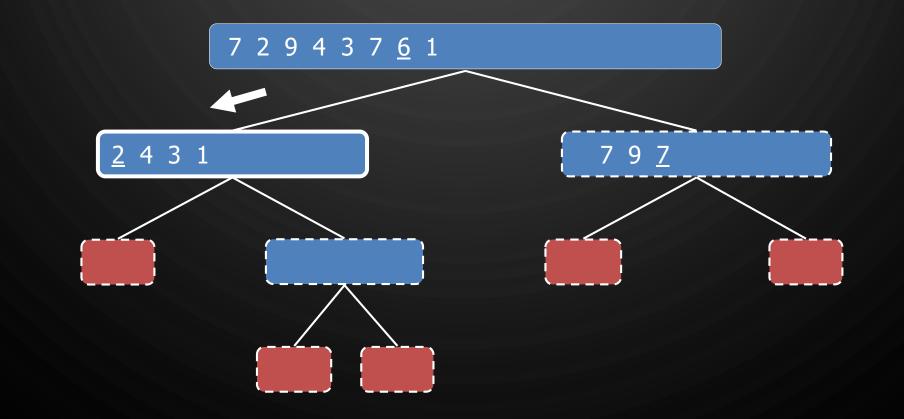
 \bigcirc

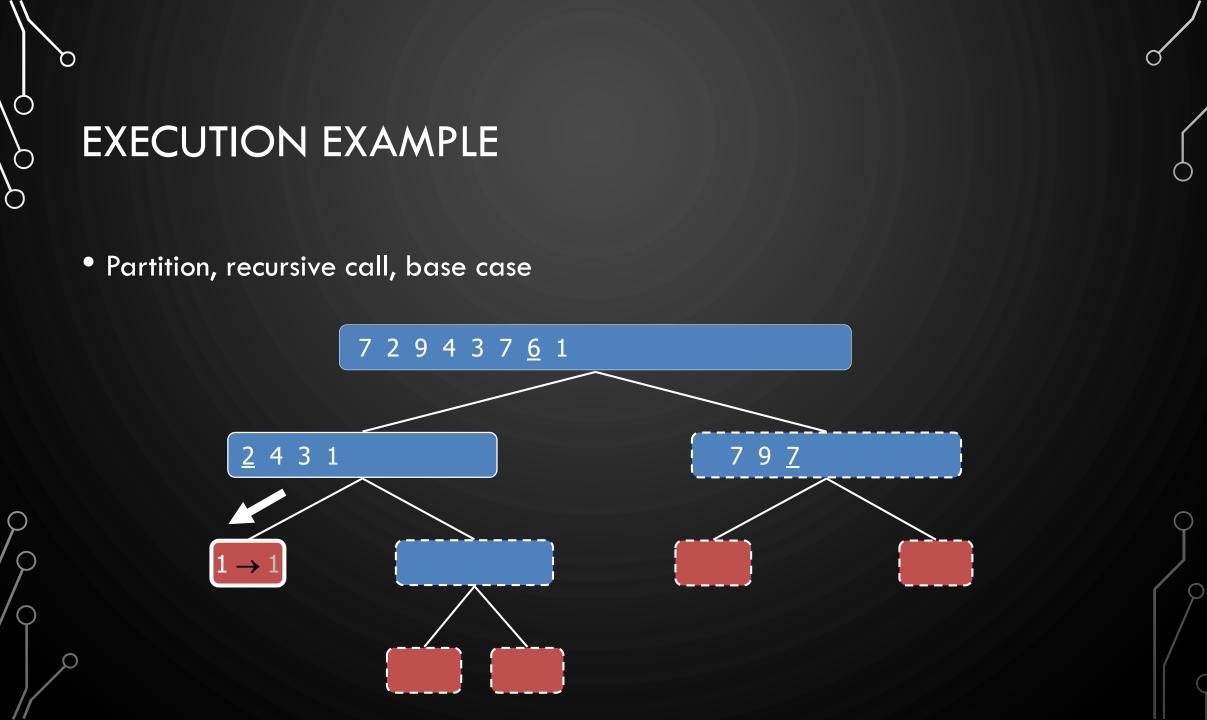
O

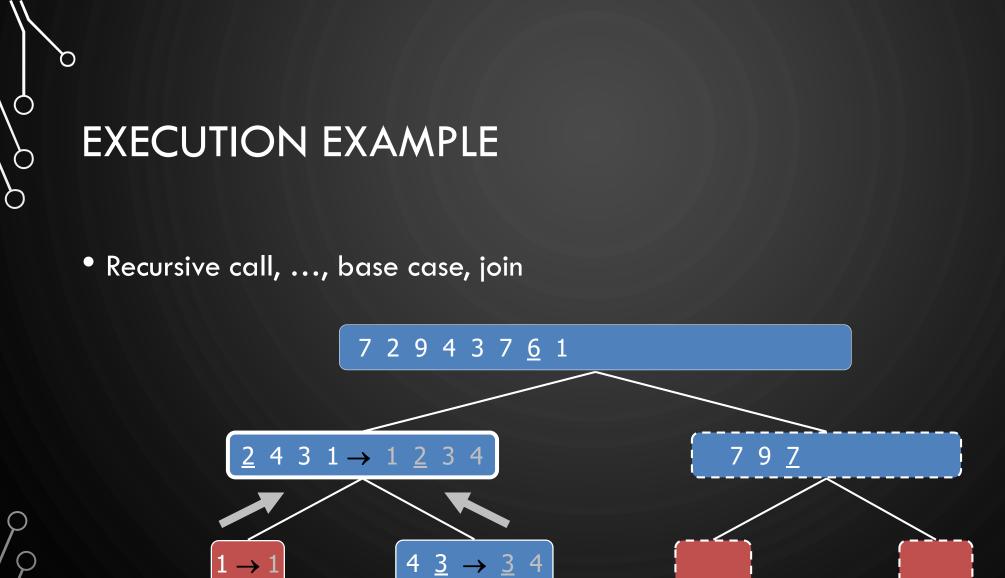
0

6

• Partition, recursive call, pivot selection







 $4 \rightarrow 4$

6

 \bigcirc

EXECUTION EXAMPLE

 \mathcal{O}

 \bigcirc

O

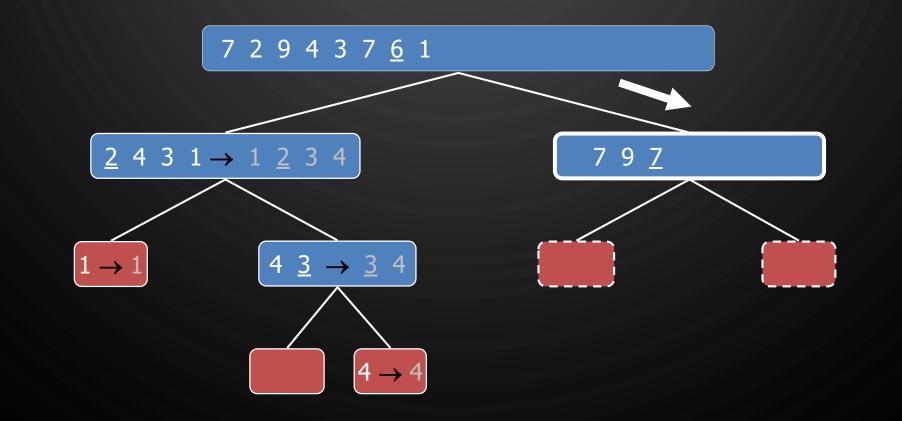
 \mathcal{O}

6

 \bigcirc

 \bigcirc

• Recursive call, pivot selection



 \mathcal{O}

 \bigcirc

O

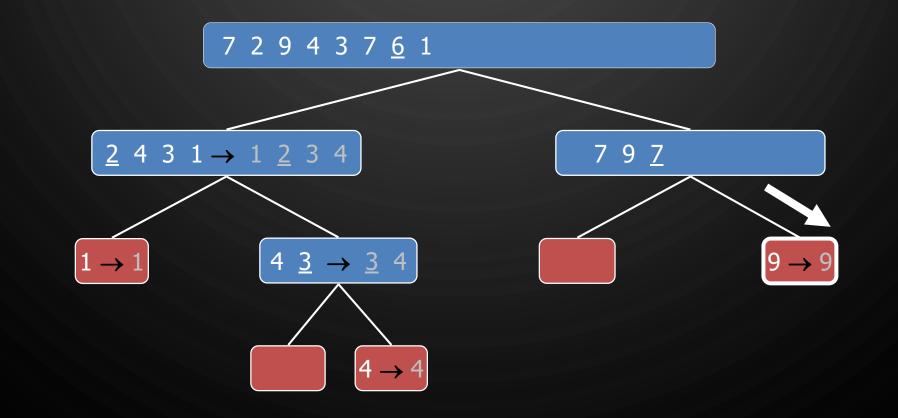
 \mathcal{O}

6

 \bigcirc

 \bigcirc

• Partition, ..., recursive call, base case



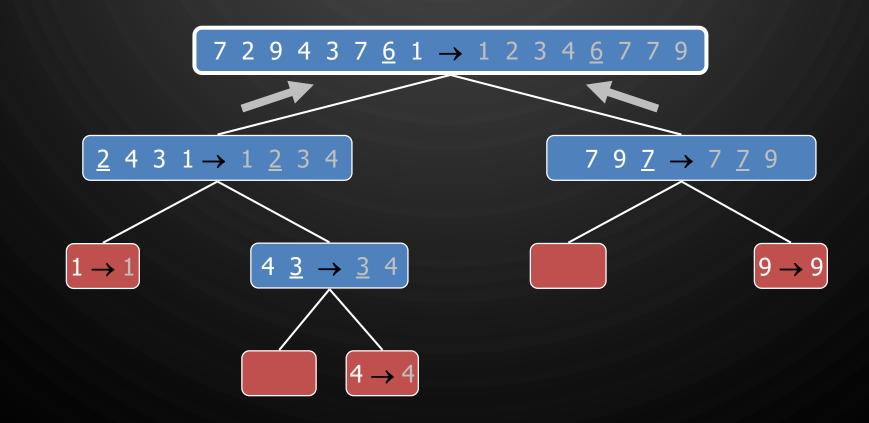
• Join, join

6

Ò

 \bigcirc

 \bigcirc



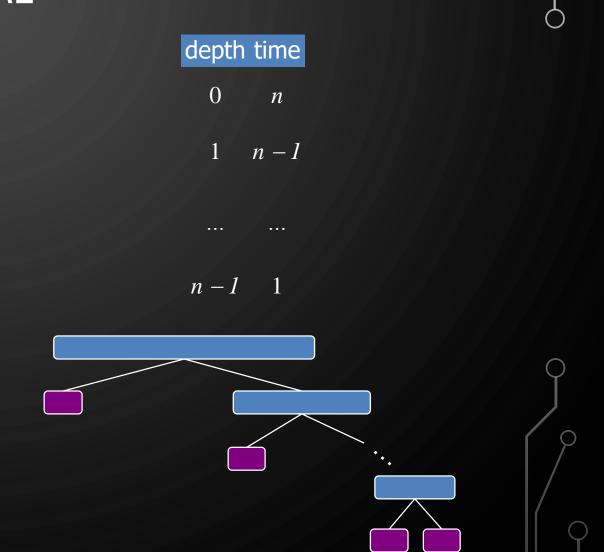
WORST-CASE RUNNING TIME

 The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element

 \bigcirc

 \bigcirc

- One of L and G has size n-1 and the other has size 0
- The running time is proportional to: $n + (n - 1) + \dots + 2 + 1 = O(n^2)$
- Alternatively, using recurrence equations: $T(n) = T(n-1) + O(n) = O(n^2)$



EXPECTED RUNNING TIME REMOVING EQUAL SPLIT ASSUMPTION

- Consider a recursive call of quick-sort on a sequence of size S
 - Good call: the sizes of L and G are each less than $\frac{3s}{4}$
 - Bad call: one of L and G has size greater than $\frac{3s}{4}$

Bad call

Good call

• A call is good with probability 1/2

O

 \bigcirc

О

Q

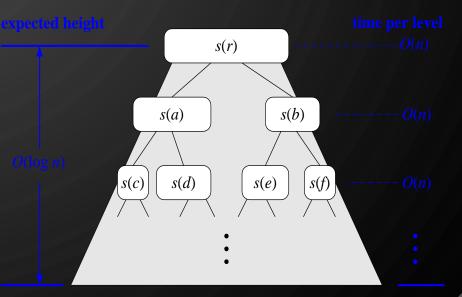
• 1/2 of the possible pivots cause good calls:

EXPECTED RUNNING TIME

- Probabilistic Fact: The expected number of coin tosses required in order to get k heads is 2k (e.g., it is expected to take 2 tosses to get heads)
- For a node of depth *i*, we expect
 - $\frac{l}{2}$ ancestors are good calls
 - The size of the input sequence for the current call is at most $\left(\frac{3}{4}\right)^2 n$
- Therefore, we have

 \bigcirc

- For a node of depth $2\log_{\frac{4}{2}} n$, the expected input size is one
- The expected height of the quick-sort tree is $O(\log n)$
- The amount or work done at the nodes of the same depth is O(n)
- Thus, the expected running time of quick-sort is $O(n \log n)$



IN-PLACE QUICK-SORT

- Quick-sort can be implemented to run in-place
- In the partition step, we use replace operations to rearrange the elements of the input sequence such that
 - the elements less than the pivot have indices less than h
 - the elements equal to the pivot have indices between h and k
 - the elements greater than the pivot have indices greater than k
- The recursive calls consider

Q

- elements with indices less than h
- elements with indices greater than k

Algorithm inPlaceQuickSort(S, l, r) Input: Array S, indices l, rOutput: Array S with the elements between l and r sorted

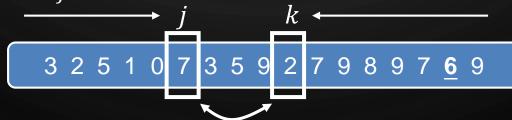
1. if $l \ge r$ 2. return S 3. $i \leftarrow rand()\%(r-l) + l$ //random integer between l and r4. $x \leftarrow S[i]$ 5. $(h,k) \leftarrow inPlacePartition(x)$ 6. inPlaceQuickSort(S, l, h - 1)7. inPlaceQuickSort(S, k + 1, r)8. return S

IN-PLACE PARTITIONING

• Perform the partition using two indices to split S into L and $E \cup G$ (a similar method can split $E \cup G$ into E and G).

Repeat until j and k cross:

- Scan *j* to the right until finding an element $\geq x$.
- Scan k to the left until finding an element < x.
- Swap elements at indices *j* and *k*



SUMMARY OF SORTING ALGORITHMS (SO FAR)

Q

 \bigcirc

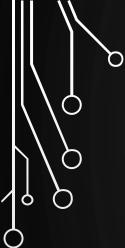
O

0

6

 \bigcirc

Algorithm	Time	Notes
Selection Sort	$O(n^2)$	Slow, in-place For small data sets
Insertion Sort	$O(n^2)$ WC, AC O(n) BC	Slow, in-place For small data sets
Heap Sort	$O(n \log n)$	Fast, in-place For large data sets
Quick Sort	Exp. $O(n \log n)$ AC, BC $O(n^2)$ WC	Fastest, randomized, in-place For large data sets
Merge Sort	$O(n \log n)$	Fast, sequential data access For huge data sets



 \bigcirc

SORTING LOWER BOUND

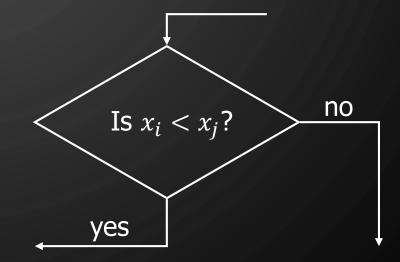
 \mathbf{O}

 $\boldsymbol{\mathcal{F}}$

COMPARISON-BASED SORTING

 Many sorting algorithms are comparison based.

- They sort by making comparisons between pairs of objects
- Examples: bubble-sort, selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, ...
- Let us therefore derive a lower bound on the running time of any algorithm that uses comparisons to sort n elements, $x_1, x_2, ..., x_n$.



COUNTING COMPARISONS

• Let us just count comparisons then.

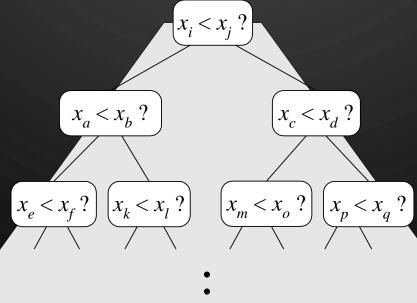
D

 \bigcirc

 \mathcal{O}

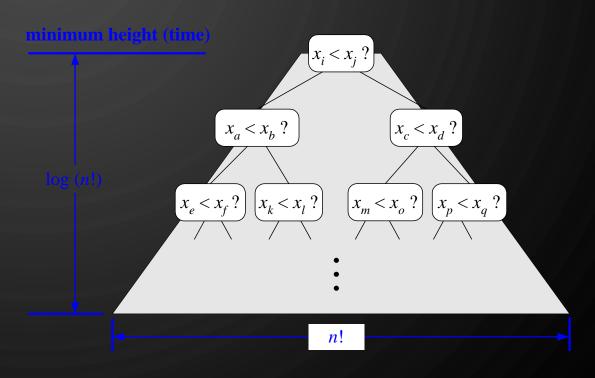
6

• Each possible run of the algorithm corresponds to a root-to-leaf path in a decision tree $x < x^2$

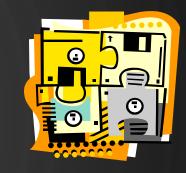


DECISION TREE HEIGHT

- The height of the decision tree is a lower bound on the running time
- Every input permutation must lead to a separate leaf output
- If not, some input ...4...5... would have same output ordering as ...5...4..., which would be wrong
- Since there are $n! = 1 * 2 * \cdots * n$ leaves, the height is at least log(n!)



Ć



THE LOWER BOUND

 \bigcirc

 \mathcal{O}

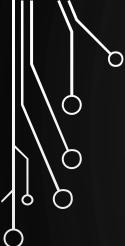
Q

 \bigcirc

• Any comparison-based sorting algorithm takes at least log(n!) time

$$\log(n!) \ge \log\left(\frac{n}{2}\right)^{\frac{n}{2}} = \frac{n}{2}\log\frac{n}{2}$$

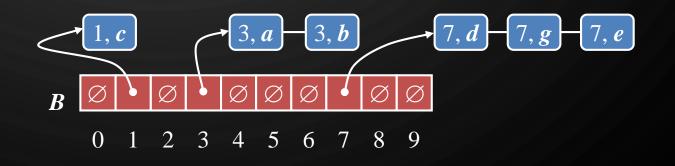
• That is, any comparison-based sorting algorithm must run in $\Omega(n\log n)$ time.



 \bigcirc

BUCKET-SORT AND RADIX-SORT

CAN WE SORT IN LINEAR TIME?



BUCKET-SORT

- Let be S be a sequence of n (key, element) items with keys • in the range [0, N-1]
- Bucket-sort uses the keys as indices into an auxiliary array • B of sequences (buckets)
 - Phase 1: Empty sequence S by moving each entry into its ٠ bucket B[k]
 - Phase 2: for $i \leftarrow 0 \dots N 1$, move the items of bucket B[i]• to the end of sequence S
- Analysis:
 - Phase 1 takes O(n) time
 - Phase 2 takes O(n+N) time
- Bucket-sort takes O(n + N) time •

Algorithm bucketSort(S, N)

Input: Sequence S of entries with integer keys in the range [0, N-1]Output: Sequence S sorted in nondecreasing order of the keys

- $B \leftarrow array of N empty sequences$
- 2. for each entry $e \in S$ do

$$k \leftarrow e. \operatorname{key}()$$

0

remove e from S and insert it at the end of bucket B[k]4.

for
$$i \leftarrow 0 \dots N - 1$$
 do

6. for each entry
$$e \in B[i]$$
 do
7. remove *e* from bucket *B*

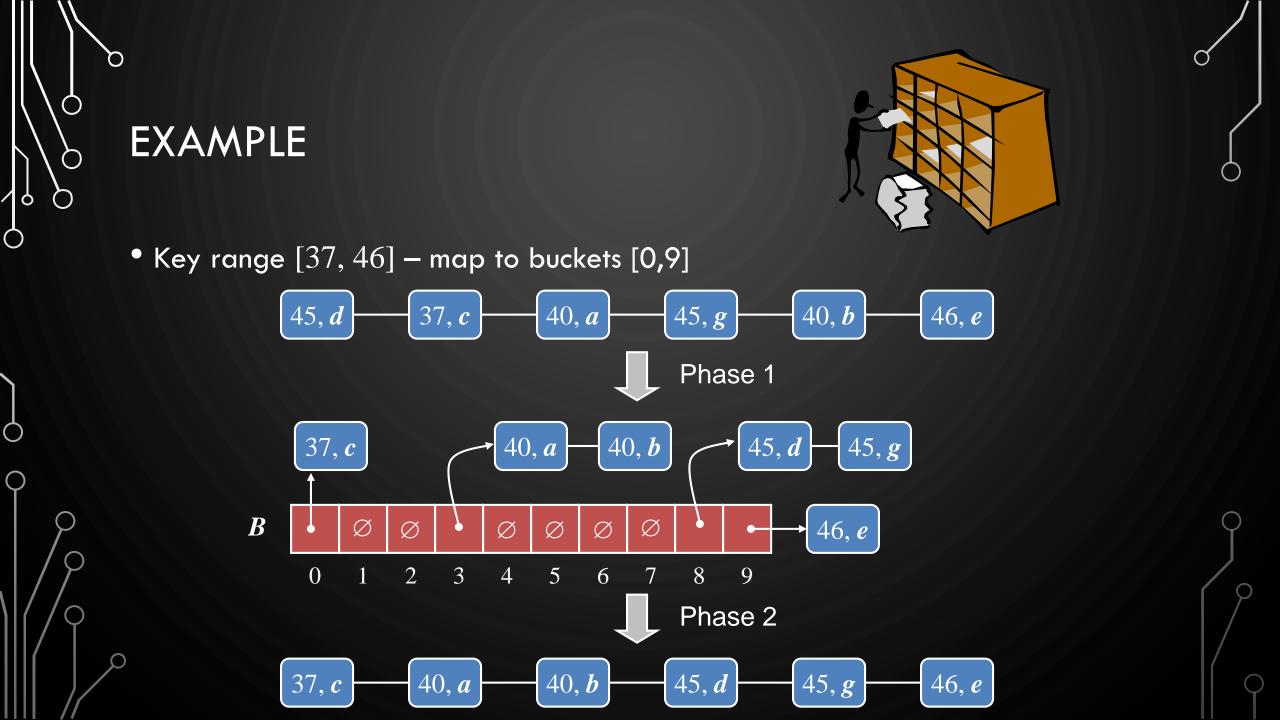
remove e from bucket B[i] and insert it at the end of S

PROPERTIES AND EXTENSIONS

Properties

- Key-type
 - The keys are used as indices into an array and cannot be arbitrary objects
 - No external comparator
- Stable sorting
 - The relative order of any two items with the same key is preserved after the execution of the algorithm

- Extensions
 - Integer keys in the range [a, b]
 - Put entry e into bucket B[k-a]
 - String keys from a set D of possible strings, where D has constant size (e.g., names of the 50 U.S. states)
 - Sort D and compute the index i(k) of each string k of D in the sorted sequence
 - Put item e into bucket B[i(k)]



LEXICOGRAPHIC ORDER

Given a list of tuples:
(7,4,6) (5,1,5) (2,4,6) (2,1,4) (5,1,6) (3,2,4)

After sorting, the list is in lexicographical order:
 (2,1,4) (2,4,6) (3,2,4) (5,1,5) (5,1,6) (7,4,6)

 \mathbf{O}

 \bigcirc

LEXICOGRAPHIC ORDER FORMALIZED

- A *d*-tuple is a sequence of *d* keys $(k_1, k_2, ..., k_d)$, where key k_i is said to be the *i*-th dimension of the tuple
 - Example the Cartesian coordinates of a point in space is a 3-tuple (x, y, z)
- The lexicographic order of two d-tuples is recursively defined as follows

•
$$(x_1, x_2, \dots, x_d) < (y_1, y_2, \dots, y_d) \Leftrightarrow$$

Q

$$x_1 < y_1 \lor (x_1 = y_1 \land (x_2, \dots, x_d) < (y_2, \dots, y_d))$$

• i.e., the tuples are compared by the first dimension, then by the second dimension, etc.

EXERCISE LEXICOGRAPHIC ORDER

- Given a list of 2-tuples, we can order the tuples lexicographically by applying a stable sorting algorithm two times:
 (3,3) (1,5) (2,5) (1,2) (2,3) (1,7) (3,2) (2,2)
- Possible ways of doing it:
 - Sort first by 1st element of tuple and then by 2nd element of tuple
 - Sort first by 2nd element of tuple and then by 1st element of tuple
- Show the result of sorting the list using both options

EXERCISE LEXICOGRAPHIC ORDER

- (3,3) (1,5) (2,5) (1,2) (2,3) (1,7) (3,2) (2,2)
- Using a stable sort,
 - Sort first by 1st element of tuple and then by 2nd element of tuple
 - Sort first by 2nd element of tuple and then by 1st element of tuple
- Option 1:

O

 \bigcirc

 \cap

- 1st sort: (1,5) (1,2) (1,7) (2,5) (2,3) (2,2) (3,3) (3,2)
- 2nd sort: (1,2) (2,2) (3,2) (2,3) (3,3) (1,5) (2,5) (1,7) WRONG
- Option 2:
 - 1st sort: (1,2) (3,2) (2,2) (3,3) (2,3) (1,5) (2,5) (1,7)
 - 2nd sort: (1,2) (1,5) (1,7) (2,2) (2,3) (2,5) (3,2) (3,3) CORRECT

LEXICOGRAPHIC-SORT

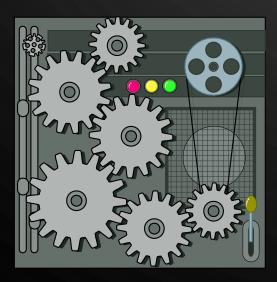
- Let C_i be the comparator that compares two tuples by their *i*-th dimension
- Let stableSort(S, C) be a stable sorting algorithm that uses comparator C
- Lexicographic-sort sorts a sequence of dtuples in lexicographic order by executing d times algorithm stableSort, one per dimension
- Lexicographic-sort runs in O(dT(n)) time, where T(n) is the running time of stableSort

Algorithm lexicographicSort(S) Input: Sequence S of d-tuples Output: Sequence S sorted in lexicographic order 1. for $i \leftarrow d \dots 1$ do 2. stableSort(S, C_i)

RADIX-SORT

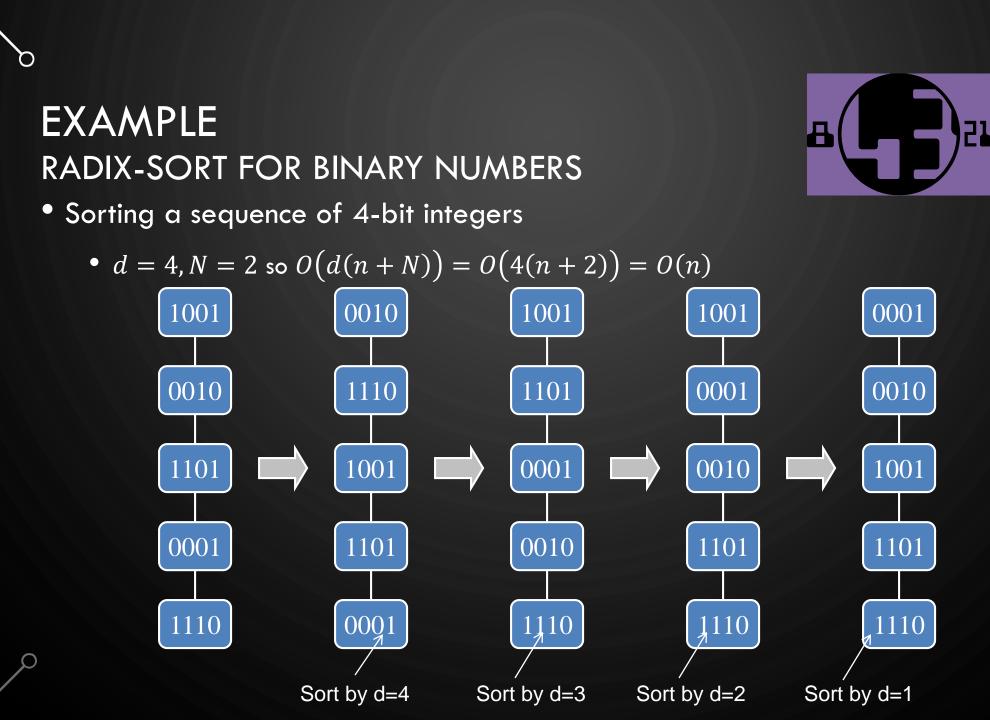
Q

- Radix-sort is a specialization of lexicographic-sort that uses bucket-sort as the stable sorting algorithm in each dimension
- Radix-sort is applicable to tuples where the keys in each dimension i are integers in the range [0, N 1]
- Radix-sort runs in time Oig(d(n+N)ig)



Algorithm radixSort(*S*, *N*) Input: Sequence *S* of *d*-tuples such that $(0, ..., 0) \le (x_1, ..., x_d)$ and $(x_1, ..., x_d) \le (N - 1, ..., N - 1)$ for each tuple $(x_1, ..., x_d)$ in *S* Output: Sequence *S* sorted in lexicographic order

- **1.** for $i \leftarrow d \dots 1$ do
- 2. set the key k of each entry $(k, (x_1, ..., x_d))$ of S to *i*th dimension x_i
- **3.** bucketSort(*S*,*N*)



 \bigcirc

 \bigcirc

 \mathcal{O}

6

SUMMARY OF SORTING ALGORITHMS

Q

 \bigcirc

0

6

6

Ò

 \bigcirc

 \bigcirc

Algorithm	Time	Notes
Selection Sort	$O(n^2)$	Slow, in-place For small data sets
Insertion Sort	$O(n^2)$ WC, AC O(n) BC	Slow, in-place For small data sets
Heap Sort	$O(n \log n)$	Fast, in-place For large data sets
Quick Sort	Exp. $O(n \log n)$ AC, BC $O(n^2)$ WC	Fastest, randomized, in-place For large data sets
Merge Sort	$O(n \log n)$	Fast, sequential data access For huge data sets
Radix Sort	O(d(n+N)), d #digits, N range of digit values	Fastest, stable only for integers

ď

()

 \bigcirc

SET OPERATIONS

- A set is an ordered data structure similar to an ordered map, except only elements are stored (and yes elements must be unique)
- We represent a set by the sorted sequence of its elements
- By specializing the auxiliary methods the generic merge algorithm can be used to perform basic set operations:
 - Union $A \cup B$ Return all elements which appear in A or B (unique only)
 - Intersection $A \cap B$ Return only elements which appear in both A and B
 - Subtraction $A \setminus B$ Return elements in A which are not in B
- The running time of an operation on sets A and B should be at most $O(n_A + n_B)$

- Set union:
 - if a < bS. insertFront(a)
 - if b < aS. insertFront(b)
 - else a = bS. insertFront(a)
- Set intersection:
 - if a < b {do nothing}
 - if b < a {do nothing}
 - else a = bS. insertBack(a)

GENERIC MERGING

- Generalized merge of two sorted sets A and B
- Auxiliary methods (generic functions)
 - alsLess(*a*, *S*)

 \bigcirc

 \bigcirc

Q

- blsLess(*b*,*S*)
- bothAreEqual(*a*, *b*, *S*)
- Runs in $O(n_A + n_B)$ time provided the auxiliary methods run in O(1) time

Algorithm genericMerge(A, B) **Input:** Sets A, B (implemented as sequences) Output: Set S 1. $S \leftarrow \emptyset$ **2.** while $\neg A$. empty() $\land \neg B$. empty() do 3. $a \leftarrow A.$ front(); $b \leftarrow B.$ front() 4. if a < b5. alsLess(a, S) //generic action6. A.eraseFront(); 7. else if b < a8. bIsLess(b, S) //generic action9. *B*.eraseFront() 10. else //a = b11. bothAreEqual(a, b, S) //generic action **12.** *A*.eraseFront(); *B*.eraseFront() **13.** while $\neg A$. empty() do 14. alsLess(A.front(), S); A.eraseFront(**15.** while $\neg B$. empty() do **16.** blsLess(*B*.front(),*S*); *B*.eraseFront() **17.** return *S*

USING GENERIC MERGE FOR SET OPERATIONS

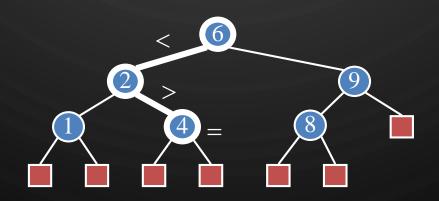
- Any of the set operations can be implemented using a generic merge
- For example:

- For intersection: only copy elements that are duplicated in both list
- For union: copy every element from both lists except for the duplicates
- All methods run in linear time

BETTER/TYPICAL SET IMPLEMENTATION

Q

• Can use search trees such that the key is equivalent to the element to implement a set, allows fast ordering of data



THE SELECTION PROBLEM

- Given an integer k and n elements $\{x_1, x_2, \dots, x_n\}$, taken from a total order, find the k-th smallest element in this set.
 - Also called order statistics, the *i*th order statistic is the *i*th smallest element
 - Minimum k = 1 1st order statistic
 - Maximum k = n nth order statistic
 - Median $k = \left\lfloor \frac{n}{2} \right\rfloor$

• etc

Q

 \bigcirc

THE SELECTION PROBLEM

• Naïve solution - SORT!

 \mathcal{O}

6

• We can sort the set in $O(n \log n)$ time and then index the k-th element. k=3

$$7 4 9 \underline{6} 2 \rightarrow 2 4 \underline{6} 7 9$$

• Can we solve the selection problem faster?

THE MINIMUM (OR MAXIMUM)

Algorithm minimum(A)Input: Array AOutput: minimum element in A1. $m \leftarrow A[1]$ 2. for $i \leftarrow 2 \dots n$ do3. $m \leftarrow \min(m, A[i])$ 4. return m

O

 \bigcirc

O

 \mathcal{O}

6

 \bigcirc

 \bigcirc

- Running Time
 - 0(n)
- Is this the best possible?

QUICK-SELECT

6

- Quick-select is a randomized selection algorithm based on the prune-and-search paradigm:
 - Prune: pick a random element x (called pivot) and partition S into
 - L elements < x
 - E elements = x
 - G elements > x
 - Search: depending on k, either answer is in E, or we need to recur on either L or G
- Note: Partition same as Quicksort

 $k \leq |L|$ $k \leq |L|$ $k \leq |L|$ $k \geq |L| + |E|$ k' = k - |L| - |E|

 $|L| < k \le |L| + |E|$ (done)

QUICK-SELECT VISUALIZATION

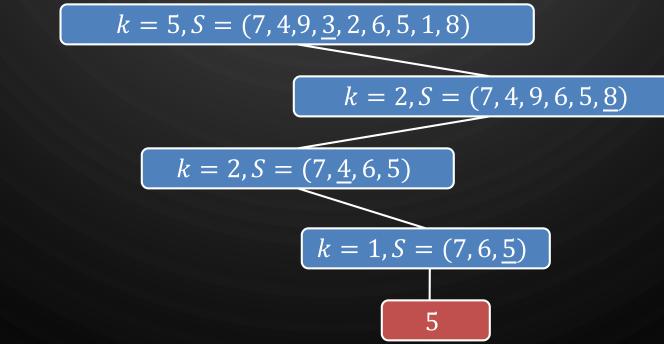
O

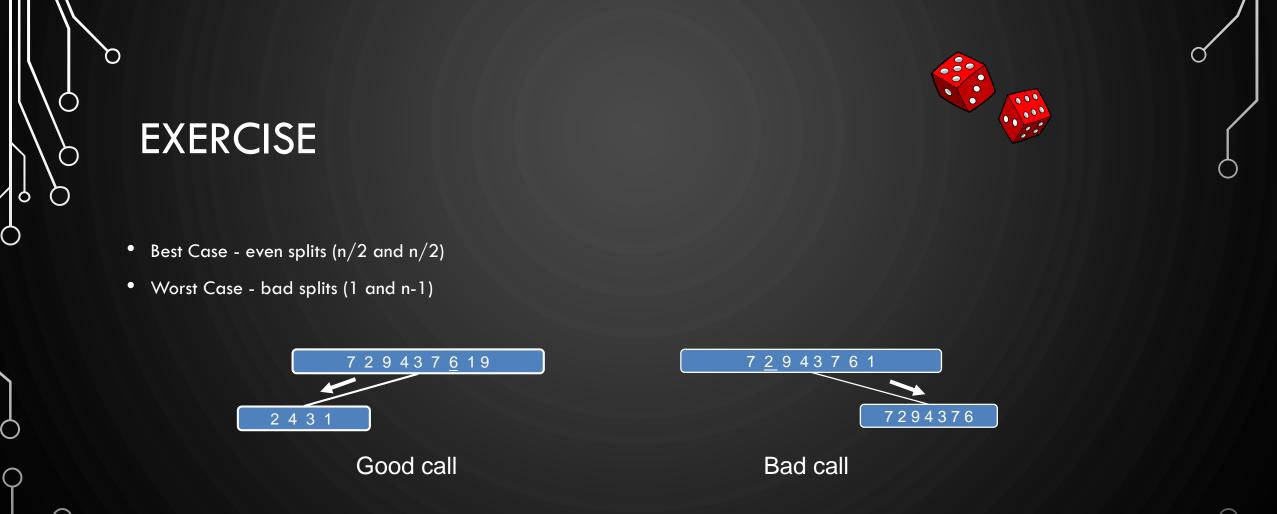
 \bigcirc

 \mathcal{O}

6

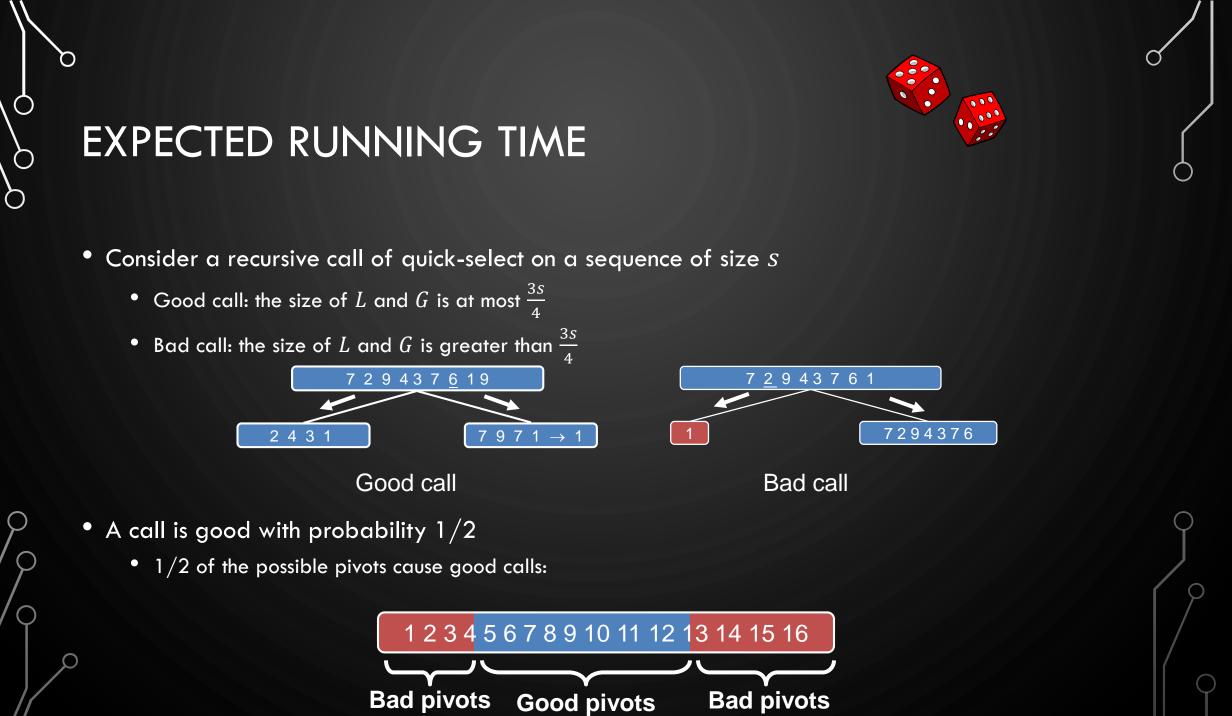
- An execution of quick-select can be visualized by a recursion path
 - Each node represents a recursive call of quick-select, and stores k and the remaining sequence





• Derive and solve the recurrence relation corresponding to the best case performance of randomized quick-select.

• Derive and solve the recurrence relation corresponding to the worst case performance of randomized quick-select.



EXPECTED RUNNING TIME

- Probabilistic Fact #1: The expected number of coin tosses required in order to get one head is two
- Probabilistic Fact #2: Expectation is a linear function:
 - E(X + Y) = E(X) + E(Y)
 - E(cX) = cE(X)

6

 \bigcirc

- Let T(n) denote the expected running time of quick-select.
- By Fact #2, $T(n) < T\left(\frac{3n}{4}\right) + bn * (expected \# of calls before a good call)$
- By Fact #1, $T(n) < T\left(\frac{3n}{4}\right) + 2bn$
- That is, T(n) is a geometric series: $T(n) < 2bn + 2b\left(\frac{3}{4}\right)n + 2b\left(\frac{3}{4}\right)^2n + 2b\left(\frac{3}{4}\right)^3n + \cdots$
- So T(n) is O(n).
- We can solve the selection problem in O(n) expected time.

for G

DETERMINISTIC SELECTION

- We can do selection in O(n) worst-case time. •
- Main idea: recursively use the selection algorithm itself to find a good pivot for quick-select:
 - Divide S into $\frac{n}{5}$ sets of 5 each
 - Find a median in each set
 - Recursively find the median of the "baby" medians. •

Min size for L

 \bigcirc

 \bigcirc

O

 \bigcirc

Min size

See Exercise C-11.22 for details of analysis.

INTERVIEW QUESTION 1

Q

• You are given two sorted arrays, A and B, where A has a large enough buffer at the end to hold B. Write a method to merge B into A in sorted order.

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

INTERVIEW QUESTION 2

Q

- Write a method to sort an array of strings so that all the anagrams are next to each other.
 - Two words are anagrams if they use the exact same letters, i.e., race and care are anagrams

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

INTERVIEW QUESTION 3

 \mathcal{O}

Q

 \bigcirc

 Imagine you have a 2 TB file with one string per line. Explain how you would sort the file.

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.